Data Mining Competition Practices : Methods and Cases

個数:
  • 予約

Data Mining Competition Practices : Methods and Cases

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9789819534456

Full Description

This book aims to provide readers with a clear implementation process for data mining competition solutions and explains the key details involved. In addition to offering the necessary theoretical knowledge, it also provides plug-and-play code. By reading this book, readers will learn how to design a solution for a data mining competition, understand the various details and specific implementation methods of the solution, and learn how to continually refine and optimize it. The book also includes practical case studies to help readers grasp and reinforce these concepts. Data mining competitions offer datasets that closely resemble real-world scenarios, making this book an excellent choice for those who want to learn data mining techniques through hands-on practice.

At the same time, this book can also serve as a reference guide, providing various methods and techniques for the entire process from data input to obtaining final results in different scenarios, including structured data, natural language processing, computer vision, video understanding, and reinforcement learning. These practical methods and techniques can help readers significantly improve their performance on datasets and are applicable not only in data mining competitions but also in research and real-world business applications.

The translation was done with the help of artificial intelligence. A subsequent human revision was done primarily in terms of content.

Contents

Chapter 1: Introduction to Data Mining Competitions.- Chapter 2: Structured Data: Theoretical Part.- Chapter 3: Structured Data: Practical Part.- Chapter 4: Natural Language Processing: Theoretical Part.- Chapter 5: Natural Language Processing: Practical Part.- Chapter 6: Computer Vision (Image): Theoretical Part.- Chapter 7: Computer Vision (Image): Practical Part.- Chapter 8: Computer Vision (Video): Theoretical Part.- Chapter 9: Computer Vision (Video): Practical Part.- Chapter 10: Reinforcement Learning: Theoretical Part.- Chapter 11: Reinforcement Learning: Practical Part.

最近チェックした商品