Virtual Turning Points II : Their Interplay with Integral Representations and Non-Hereditary Turning Points (Springerbriefs in Mathematical Physics)

個数:
  • 予約

Virtual Turning Points II : Their Interplay with Integral Representations and Non-Hereditary Turning Points (Springerbriefs in Mathematical Physics)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 102 p.
  • 言語 ENG
  • 商品コード 9789819528165

Full Description

This book aims to build on the significant results reported since the publication of "Virtual Turning Points" (VTP). This volume seeks to accelerate this trend by presenting these results in a unified manner, utilizing s-VTP and the integral representation of solutions. This includes the introduction of a non-hereditary turning point (NHTP), which naturally appears by considering tangential systems. NHTP initially causes no issues for the original system, but it creates a new class of VTPs and additional periods when perturbing the equation while keeping its principal part intact.

Integral representations of solutions provide intriguing examples of Stokes geometry (SG). We have selected some particularly illuminating examples and presented them in Sect. 1.5 to address the effects of NHTP and the crossing phenomenon of three ordinary Stokes curves, which were not dealt with in VTP. The most important example suggests that these new phenomena are related to the location of singularities of Borel transformed WKB solutions. Comparing with the second-order case, we study this relationship from the viewpoint of the theory of growing trees already discussed in VTP.

These examples also reveal an impressive fact that NHTP creates a new class of VTPs through the so-called bicharacteristic chain. Another example visualizes a leaf-type and a tadpole-type SG, the connection formulas for which are explicitly computed in this volume. Finally in the Appendix, the activeness of SG related to the crossing of three Stokes curves is examined, which requires employment of the exact steepest descent method, a WKB-theoretical generalization of the traditional steepest descent method, despite its simple appearance.

Contents

1 Integral Representation of Solutions and Related Topics.- 2 Degeneration of the Stokes Geometry for Higher-Order Equations.- 3 A Bicharacteristic Chain Associated with a Non-hereditary Turning Point.- Appendix A: Confirmation of the Activeness of Some Stokes Curves by Using the Exact Steepest Descent Method.

最近チェックした商品