Elements of Measure and Probability (Texts and Readings in Mathematics)

個数:
  • 予約

Elements of Measure and Probability (Texts and Readings in Mathematics)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 310 p.
  • 言語 ENG
  • 商品コード 9789819527571

Full Description

This book can serve as a first course on measure theory and measure theoretic probability for upper undergraduate and graduate students of mathematics, statistics and probability. Starting from the basics, the measure theory part covers Caratheodory's theorem, Lebesgue-Stieltjes measures, integration theory, Fatou's lemma, dominated convergence theorem, basics of Lp spaces, transition and product measures, Fubini's theorem, construction of the Lebesgue measure in Rd, convergence of finite measures, Jordan-Hahn decomposition of signed measures, Radon-Nikodym theorem and the fundamental theorem of calculus.

The material on probability covers standard topics such as Borel-Cantelli lemmas, behaviour of sums of independent random variables, 0-1 laws, weak convergence of probability distributions, in particular via moments and cumulants, and the central limit theorem (via characteristic function, and also via cumulants), and ends with conditional expectation as a natural application of the Radon-Nikodym theorem. A unique feature is the discussion of the relation between moments and cumulants, leading to Isserlis' formula for moments of products of Gaussian variables and a proof of the central limit theorem avoiding the use of characteristic functions.

For clarity, the material is divided into 23 (mostly) short chapters. At the appearance of any new concept, adequate exercises are provided to strengthen it. Additional exercises are provided at the end of almost every chapter. A few results have been stated due to their importance, but their proofs do not belong to a first course. A reasonable familiarity with real analysis is needed, especially for the measure theory part. Having a background in basic probability would be helpful, but we do not assume a prior exposure to probability.

Contents

Preliminaries.- Classes of Sets.- Introduction to Measures.- Extension of Measures.- Lebesgue-Stieltjes Measures.- Measurable Functions.- Integral.- Basic Inequalities.- Lp Spaces: Topological Properties.- Product Spaces and Transition Measures.- Random Variables and Vectors.- Moments and Cumulants.- Further Modes of Convergence of Functions.- Independence and Basic Conditional Probability.- 0-1 Laws.- Sums of Independent Random Variables.- Convergence of Finite Measures.- Characteristic Functions.- Central Limit Theorem.- Signed Measure.- Randon-Nikodym Theorem .- Fundamental Theorem of Calculus.- Conditional Expectation.

最近チェックした商品