High-Dimensional Regression Analysis and Artificial Intelligence : Theory, Methods and Applications

個数:
  • ポイントキャンペーン

High-Dimensional Regression Analysis and Artificial Intelligence : Theory, Methods and Applications

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 414 p.
  • 言語 ENG
  • 商品コード 9789819525133

Full Description

In this book, a novel high-dimensional linear and nonlinear regression model is introduced to address, in part, the challenges of evaluating the stability and confidence of large-scale models' interpretability. The book begins by reviewing foundational concepts in regression analysis, and discussing the current state and challenges of AI interpretability. Through an in-depth exploration of regression models, the core principles of data-driven linear regression are explained. To enhance the explanatory power of regression models, variable-parameter regression models are further investigated and extended to variable-parameter nonlinear regression models. To handle complex relationships, the Gauss-Newton iterative method is incorporated, ensuring the stability of high-dimensional nonlinear regression. The Confidence Interval-based Credibility Evaluation (CICE) framework combines statistical indicators—such as interval width, center deviation, and accuracy—into a single score to assess the stability and reliability of explanations, validated through case studies in engineering, finance, and time series prediction. Overall, the book presents a coherent framework for interpretable AI, integrating regression modeling, confidence region construction, and credibility evaluation to enhance interpretability and statistical accountability, fostering more trustworthy AI systems. Chapter 1 introduces the fundamental concepts and theoretical developments of both regression analysis and AI explainability, highlighting their interconnections. Chapter 2 reviews essential probability theory and mathematical statistics, covering random variables, measure spaces, probability distributions, parameter estimation (including least squares and maximum likelihood methods), and asymptotic theory, which serve as the foundation for analyzing model consistency and convergence. Chapter 3 focuses on the effects of correlated errors in linear regression, establishing parameter convergence conditions to ensure the consistency and asymptotic normality of covariance estimators. Chapter 4 introduces variable-parameter regression models and systematically studies M-estimators and generalized regression models within the framework of robust statistics. By addressing non-normal errors and outliers, these methods improve model adaptability. The chapter also establishes the robustness of the generalized regression model through theoretical analysis of covariance estimation. Chapter 5 introduces the Confidence Interval-based Credibility Evaluation (CICE) framework, which integrates multiple statistical indicators into a unified score to assess the stability and reliability of model explanations. Through real-world case studies in engineering, finance, and time series prediction, the effectiveness of CICE in detecting unstable interpretations and enhancing model transparency is demonstrated.

Contents

Introduction.- Elements.- Fixed-Parameter Prototype Regression Models.- Variable-Parameter Regression Models.- Locally Interpretable Models Confidence Evaluation Framework.- Appendix.