Transverse Instability of Solitary Waves : Multisymplectic Dirac Operators and the Evans Function (Mathematical Physics Studies)

個数:
  • ポイントキャンペーン

Transverse Instability of Solitary Waves : Multisymplectic Dirac Operators and the Evans Function (Mathematical Physics Studies)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 113 p.
  • 言語 ENG
  • 商品コード 9789819520459

Full Description

This book presents a wide-ranging geometric approach to the stability of solitary wave solutions of Hamiltonian partial differential equations (PDEs). It blends original research with background material and a review of the literature. The overarching aim is to integrate geometry, algebra, and analysis into a theoretical framework for the spectral problem associated with the transverse instability of line solitary wave solutions—waves that travel uniformly in a horizontal plane and are embedded in two spatial dimensions. Rather than focusing on individual PDEs, the book develops an abstract class of Hamiltonian PDEs in two spatial dimensions and time, based on multisymplectic Dirac operators and their generalizations. This class models a broad range of nonlinear wave equations and benefits from a distinct symplectic structure associated with each spatial dimension and time. These structures inform both the existence theory (via variational principles, the Maslov index, and transversality conditions) and the linear stability analysis (through a multisymplectic partition of the Evans function). The spectral problem arising from linearization about a solitary wave is formulated as a dynamical system, with three symplectic structures contributing to the analysis. A two-parameter Evans function—depending on the spectral parameter and transverse wavenumber—is constructed from this system. This structure enables new results concerning the Evans function and the linear transverse instability of solitary waves. A key result is an abstract derivative formula for the Evans function in the regime of small stability exponents and transverse wavenumbers. To illustrate the theory, the book introduces a class of vector-valued nonlinear wave equations in 2+1 dimensions that are multisymplectic and admit explicit solitary wave solutions. In this example, the stable and unstable subspaces involved in the Evans function construction are each four-dimensional and can be explicitly computed. The example is used to demonstrate the geometric instability condition and to explore the inner workings of the theory in detail.

Contents

Chapter 1 Introduction.- Chapter 2 Literature Review.- Chapter 3 Multisymplectic Wave Equations and Dirac Operators.- Chapter 4 Solitary Wave Solutions and Their Properties.- Chapter 5 Linearisation about Solitary Waves.- Chapter 6 Spectral Stability and the Evans Function.- Chapter 7 Derivatives of the Evans Function.- Chapter 8 Summary of Hypotheses Used.- Chapter 9 Example: Nonlinear Wave Equation in 2 + 1.- Chapter 10 Concluding Remarks.

最近チェックした商品