- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
Nanocomposite materials as a special class of nanostructured materials have recently attracted great interest due to their extraordinary mechanical properties as well as thermal stability and oxidation resistance. The unique structure and exceptional properties make nanocomposite materials a possible alternative to traditional polycrystalline materials, which have met their limits in many recent engineering applications. In particular, nanocomposite coatings synthesized by plasma-assisted deposition processes under highly non-equilibrium conditions provide a high potential for new applications as protective and functional coatings in automotive, aerospace, tooling, electronic, or manufacturing industry.
This book provides a comprehensive overview of the synthesis of Si-containing hard nanocomposite coatings based on transition metal nitrides by plasma-based thin film processing. It demonstrates the full versatility of these nanocomposites for low Si-containing coatings tailored with superior mechanical properties and novel high Si-containing nanocomposite coatings with extraordinary thermal stability and resistance against oxidation optimized for high-temperature applications. It pays special attention to understanding growth mechanisms of these structures under specific deposition conditions, structure-property relations, and stability of individual constituents to enhance their functionality for various applications.
Contents
Synthesis of New Nanostructured Materials. Nanocrystalline Materials. Multilayers and Superlattices. Nanocomposite Films. Thin Film Processing. Principles of Plasma Discharges. Physical Sputtering and Transport of Sputtered Material. Sputter Deposition Techniques. Reactive Sputter Deposition. Film Formation and Structure. Condensation of Sputtered Material. Interface Formation. Nucleation and Growth. Microstructure of Thin Films, Structure Zone Models, Advantages and Limitations of Sputter Deposition Processes. Structure-Property Relation in Hard Films. Me-Si-N Films With a Low and Intermediate Si Content. Structure, Morphology and Phase Composition Hardness and Macrostress Oxidation Resistance Problems with Reproducibility. Novel nanocomposite films - Zr-Si-N Films with a High Si Content. Deposition Rate. Elemental Composition. Chemical Bonding and Phase Composition. Electrical and Optical Properties. Structure. Morphology. Surface Roughness. Mechanical Properties. Macrostress. Effect of Substrate Bias. Thermal Stability. Oxidation Resistance. High Si-containing W-Si-N Nanocomposite Films. Deposition Rate. Elemental Composition. Chemical Bonding and Phase Composition. Structure. Morphology. Surface Roughness. Mechanical Properties. Macrostress. Oxidation Resistance. Characterization of Thin Films. Mechanical Properties. X-Ray Diffraction Analysis. Stress Measurement. Film Thickness Measurement. Scanning Electron Microscopy. Energy Dispersive X-Ray Spectrometry. Differential Scanning Calorimetry. Thermogravimetric Analysis.