Recent Advances in Biostatistics: False Discovery Rates, Survival Analysis, and Related Topics (Series in Biostatistics)

個数:

Recent Advances in Biostatistics: False Discovery Rates, Survival Analysis, and Related Topics (Series in Biostatistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 312 p.
  • 言語 ENG
  • 商品コード 9789814329798
  • DDC分類 610.15195

Full Description

This unique volume provides self-contained accounts of some recent trends in Biostatistics methodology and their applications. It includes state-of-the-art reviews and original contributions.The articles included in this volume are based on a careful selection of peer-reviewed papers, authored by eminent experts in the field, representing a well balanced mix of researchers from the academia, R&D sectors of government and the pharmaceutical industry.The book is also intended to give advanced graduate students and new researchers a scholarly overview of several research frontiers in biostatistics, which they can use to further advance the field through development of new techniques and results.

Contents

A New Adaptive Method to Control the False Discovery Rate; Adaptive Multiple Testing Procedures Under Positive Dependence; A False Discovery Rate Procedure for Categorical Data; A Distribution for P-Values; Conditional Nelson-Aalen and Kaplan-Meier Estimators with the Muller-Wang Boundary Kernel; The Inverse Censoring Weighted Approach for Estimation of Survival Functions from Left and Right Censored Data; Modeling Survival Data Using the Piecewise Exponential Model with Random Time Grid; Analysis of Recurrent Time-to-Event Data Under Dependent Censoring; Efficient Algorithms in Bayesian Binary Regression with Skew-Probit Link; M-Estimation Methods in Heteroscedastic Nonlinear Regression Model; Regression Analysis in Failure Time Mixture Models with Change Points According to Thresholds in a Covariate; Competing Risks Data: Design and Analysis; Comparative Genomic Analysis Using Information Theory; Statistical Modeling for Positron Emission Tomography; Subset Selection in Comparative Selection Trials; Using Latent Class Analysis in Medical Diagnosis.