Theory of Randomized Search Heuristics: Foundations and Recent Developments (Series on Theoretical Computer Science)

個数:

Theory of Randomized Search Heuristics: Foundations and Recent Developments (Series on Theoretical Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 372 p.
  • 言語 ENG
  • 商品コード 9789814282666
  • DDC分類 005.1

基本説明

Covers both classical results and the most recent theoretical developments in the field of randomized search heuristics such as runtime analysis, drift analysis and convergence.

Full Description

Randomized search heuristics such as evolutionary algorithms, genetic algorithms, evolution strategies, ant colony and particle swarm optimization turn out to be highly successful for optimization in practice. The theory of randomized search heuristics, which has been growing rapidly in the last five years, also attempts to explain the success of the methods in practical applications.This book covers both classical results and the most recent theoretical developments in the field of randomized search heuristics such as runtime analysis, drift analysis and convergence. Each chapter provides an overview of a particular domain and gives insights into the proofs and proof techniques of more specialized areas. Open problems still remain widely in randomized search heuristics — being a relatively young and vast field. These problems and directions for future research are addressed and discussed in this book.The book will be an essential source of reference for experts in the domain of randomized search heuristics and also for researchers who are involved or ready to embark in this field. As an advanced textbook, graduate students will benefit from the comprehensive coverage of topics

Contents

Tail Inequalities (B Doerr); No-Free-Lunch Theorems (D Whitley); GA-Theory; Runtime Analyses of EAs, in particular, the Drift Analysis Method (P Oliveto et al.); EAs for Combinatorial Optimization Problems, in particular, Good Representations (D Johannsen); Ant Colony Optimization; Evolution Strategies: Lower Bounds and Complexity Analysis; Evolution Strategies: Theory of Markov Chains for Log-Linear Convergence (A Auger & N Hansen); Particle Swarm Optimization (C Witt); Probabilistic Model Building; Learning Classifiers.

最近チェックした商品