Introduction to Classical and Modern Analysis and Their Application to Group Representation Theory

個数:

Introduction to Classical and Modern Analysis and Their Application to Group Representation Theory

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 388 p.
  • 言語 ENG
  • 商品コード 9789814273305
  • DDC分類 530.1557223

基本説明

Suitable for use in any graduate course on analytical methods and their application to representation theory.

Full Description

This book is suitable for use in any graduate course on analytical methods and their application to representation theory. Each concept is developed with special emphasis on lucidity and clarity. The book also shows the direct link of Cauchy-Pochhammer theory with the Hadamard-Reisz-Schwartz-Gel'fand et al. regularization. The flaw in earlier works on the Plancheral formula for the universal covering group of SL(2,R) is pointed out and rectified. This topic appears here for the first time in the correct form.Existing treatises are essentially magnum opus of the experts, intended for other experts in the field. This book, on the other hand, is unique insofar as every chapter deals with topics in a way that differs remarkably from traditional treatment. For example, Chapter 3 presents the Cauchy-Pochhammer theory of gamma, beta and zeta function in a form which has not been presented so far in any treatise of classical analysis.

Contents

Convergence, Analytic Functions, Complex Integration, Residue Theorem, Cauchy-Pochhammer Theory of Gamma, Beta and Zeta Function; Bargman-Segal Spaces, Elements of the Theory of Generalized Functions; Regularizations and Cauchy's Theory of Analytic Continuation; Gel'fand-Shilov Formulas for Gamma and Beta Function; Lie Group and Invariant Measure; Representations and Unitary Representation; Wigner-Eckart Theorem; SU(2) Group; Elements of SU(3); Gell-Mann Basis and λ-Matrices; Gell-Mann Neeman Octet Model and Mass Formula; Locally Compact Groups: SL(2,R) (SU(1,1)); Principal Exceptional, Positive and Negative Discreet Series and Their Canonical Carrier Spaces; The Clebsch-Gordan Problem: D+ X D+,c; Dc X Dc,e; Group Ring and Invariant Definition of Character; Plancherel Formula as a Completeness Condition of Character; The Group SL(2,C) and Its Unitary Representations; Group Ring and Character; Plancherel Formula; SU(1,1) Content of SL(2,C); Heisenberg-Weyl Group and Its Representations; Coherent-States and Bergman-Segal Spaces; Bargmann's Integral Transform; SU(1,1) Coherent States and Integral Transforms Connecting Well-Known Carrier Spaces of SU(1,1).

最近チェックした商品