村田正幸(共)編/「ゆらぎ原理」の脳・生態系ネットワーク制御・学習への応用<br>Fluctuation-Induced Network Control and Learning : Applying the Yuragi Principle of Brain and Biological Systems

個数:

村田正幸(共)編/「ゆらぎ原理」の脳・生態系ネットワーク制御・学習への応用
Fluctuation-Induced Network Control and Learning : Applying the Yuragi Principle of Brain and Biological Systems

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 236 p.
  • 言語 ENG
  • 商品コード 9789813349759
  • DDC分類 006

Full Description

From theory to application, this book presents research on biologically and brain-inspired networking and machine learning based on Yuragi, which is the Japanese term describing the noise or fluctuations that are inherently used to control the dynamics of a system. The Yuragi mechanism can be found in various biological contexts, such as in gene expression dynamics, molecular motors in muscles, or the visual recognition process in the brain. Unlike conventional network protocols that are usually designed to operate under controlled conditions with a predefined set of rules, the probabilistic behavior of Yuragi-based control permits the system to adapt to unknown situations in a distributed and self-organized manner leading to a higher scalability and robustness.The book consists of two parts. Part 1 provides in four chapters an introduction to the biological background of the Yuragi concept as well as how these are applied to networking problems. Part 2 provides additional contributions that extend the original Yuragi concept to a Bayesian attractor model from human perceptual decision making. In the six chapters of the second part, applications to various fields in information network control and artificial intelligence are presented, ranging from virtual network reconfigurations, a software-defined Internet of Things, and low-power wide-area networks.

This book will benefit those working in the fields of information networks, distributed systems, and machine learning who seek new design mechanisms for controlling large-scale dynamically changing systems.

Contents

Chapter 1: Introduction to Yuragi Theory and Yuragi Control.- Chapter 2: Functional Roles of Yuragi in Biosystems.- Chapter 3: Next-Generation Bio- and Brain-Inspired Networking.- Chapter 4: Yuragi-Based Virtual Network Control.- Chapter 5: Introduction to Yuragi Learning.- Chapter 6: Fast/Slow-Pathway Bayesian Attractor Model for IoT Networks Based on Software-Defined Networking with Virtual Network Slicing.- Chapter 7: Application to IoT Network Control.- Chapter 8: Another Prediction Method and Application to Low-Power Wide-Area Networks.- Chapter 9: Artificial Intelligence Platform for Yuragi Learning.- Chapter 10: Bias-Free Yuragi Learning.

最近チェックした商品