Clustering Challenges in Biological Networks

個数:
  • ポイントキャンペーン

Clustering Challenges in Biological Networks

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 348 p.
  • 言語 ENG
  • 商品コード 9789812771650
  • DDC分類 570.15118

基本説明

Offers introductory knowledge of a wide range of clustering and other quantitative techniques used to solve biological problems.

Full Description

This volume presents a collection of papers dealing with various aspects of clustering in biological networks and other related problems in computational biology. It consists of two parts, with the first part containing surveys of selected topics and the second part presenting original research contributions. This book will be a valuable source of material to faculty, students, and researchers in mathematical programming, data analysis and data mining, as well as people working in bioinformatics, computer science, engineering, and applied mathematics. In addition, the book can be used as a supplement to any course in data mining or computational/systems biology.

Contents

A Novel Clustering Approach: Global Optimum Search with Enhanced Positioning (Tan & Floudas); Mathematical Programming Methods for Comparison Problems in Biocomputing (Oliveira); Classification vs. Clustering: Analyzing Gene Functionality (Perlich); A Projected Clustering Algorithm and Its Biological Application (Deng & Wu); Clique Relaxation Models of Clusters in Biological Networks (Butenko et al.); Analysis of Interaction Networks from Clusters of Co-expressed Genes: A Case Study on Inflammation (Androulakis et al.); Diversity Graphs (Blain et al.); Fixed-Parameter Algorithms for Graph-Modeled Data Clustering (Huffner et al.); Relating Subjective and Objective Pharmacovigilance Association Measures (Pearson); A Novel Similarity-based Modularity Function for Graph Partitioning (Feng et al.); Graph Algorithms for Integrated Biological Analysis, with Applications to Type 1 Diabetes Data (Eblen et al.); Graph Modeling for Clustering and Motif Findings in Biological Data (Zaslavsky & Sighn); Clustering Approach for Predicting Functions of Unknown mRNA Molecules from Their Dissipative Structures Observed in Glucose-Derepressed Saccharomyces cerevisiae (Sung et al.).

最近チェックした商品