Predictive Data Security using AI : Insights and Issues of Blockchain, IoT, and DevOps (Studies in Computational Intelligence)

個数:

Predictive Data Security using AI : Insights and Issues of Blockchain, IoT, and DevOps (Studies in Computational Intelligence)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 290 p.
  • 言語 ENG
  • 商品コード 9789811962899

Full Description

This contributed volume consists of 11 chapters that specifically cover the security aspects of the latest technologies such as Blockchain, IoT, and DevOps, and how to effectively deal with them using Intelligent techniques. Moreover, machine learning (ML) and deep learning (DL) algorithms are also not secured and often manipulated by attackers for data stealing. This book also discusses the types of attacks and offers novel solutions to counter the attacks on ML and DL algorithms. This book describes the concepts and issues with figures and the supporting arguments with facts and charts. In addition to that, the book provides the comparison of different security solutions in terms of experimental results with tables and charts. Besides, the book also provides the future directions for each chapter and novel alternative approaches, wherever applicable. Often the existing literature provides domain-specific knowledge such as the description of security aspects. However, the readers find it difficult to understand how to tackle the application-specific security issues. This book takes one step forward and offers the security issues, current trends, and technologies supported by alternate solutions. Moreover, the book provides thorough guidance on the applicability of ML and DL algorithms to deal with application-specific security issues followed by novel approaches to counter threats to ML and DL algorithms. The book includes contributions from academicians, researchers, security experts, security architectures, and practitioners and provides an in-depth understanding of the mentioned issues.

Contents

Introduction to Data Security with Machine Learning: Traditional Methods vs Recent Trends.- Data Security and Predictive Informatics: Issues, Challenges, and Opportunities.- Data Security Analytics using Machine Learning: Supervised and Unsupervised Approaches.- Data Security in Data Servers: Implementation of Security in Data Servers, Content Delivery Network Servers and Proxy Servers.- Data Security in Multimedia using AI: Perspective and Practices.- Data Security in Blockchain: Data Generation, Analysis and Predictions.

最近チェックした商品