Genetic Programming Theory and Practice XVIII (Genetic and Evolutionary Computation)

個数:

Genetic Programming Theory and Practice XVIII (Genetic and Evolutionary Computation)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 212 p.
  • 言語 ENG
  • 商品コード 9789811681158
  • DDC分類 006.3823

Full Description

This book, written by the foremost international researchers and practitioners of genetic programming (GP), explores the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP.  In this year's edition, the topics covered include many of the most important issues and research questions in the field, such as opportune application domains for GP-based methods, game playing and co-evolutionary search, symbolic regression and efficient learning strategies, encodings and representations for GP, schema theorems, and new selection mechanisms. The book includes several chapters on best practices and lessons learned from hands-on experience. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.

Contents

Chapter 1. Finding Simple Solutions to Multi-Task Visual Reinforcement Learning Problems with Tangled Program Graphs.- Chapter 2. Grammar-based Vectorial Genetic Programming for Symbolic Regression.- Chapter 3. Grammatical Evolution Mapping for Semantically-Constrained Genetic Programming.- Chapter 4. What can phylogenetic metrics tell us about useful diversity in evolutionary algorithms?.- Chapter 5. An Exploration of Exploration: Measuring the ability of lexicaseselection to find obscure pathways to optimality.- Chapter 6. Feature Discovery with Deep Learning Algebra Networks.- Chapter 7. Back To The Future — Revisiting OrdinalGP & Trustable Models After a Decade.- Chapter 8. Fitness First.- Chapter 9. Designing Multiple ANNs with Evolutionary Development: Activity Dependence.- Chapter 10. Evolving and Analyzing modularity with GLEAM (Genetic Learning by Extraction and Absorption of Modules).- Chapter 11. Evolution of the Semiconductor Industry, and the Start of X Law.