Genetic Programming for Production Scheduling : An Evolutionary Learning Approach (Machine Learning: Foundations, Methodologies, and Applications)

個数:

Genetic Programming for Production Scheduling : An Evolutionary Learning Approach (Machine Learning: Foundations, Methodologies, and Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 336 p.
  • 言語 ENG
  • 商品コード 9789811648618

Full Description

This book introduces readers to an evolutionary learning approach, specifically genetic programming (GP), for production scheduling. The book is divided into six parts. In Part I, it provides an introduction to production scheduling, existing solution methods, and the GP approach to production scheduling. Characteristics of production environments, problem formulations, an abstract GP framework for production scheduling, and evaluation criteria are also presented. Part II shows various ways that GP can be employed to solve static production scheduling problems and their connections with conventional operation research methods. In turn, Part III shows how to design GP algorithms for dynamic production scheduling problems and describes advanced techniques for enhancing GP's performance, including feature selection, surrogate modeling, and specialized genetic operators. In Part IV, the book addresses how to use heuristics to deal with multiple, potentially conflicting objectives in production scheduling problems, and presents an advanced multi-objective approach with cooperative coevolution techniques or multi-tree representations. Part V demonstrates how to use multitask learning techniques in the hyper-heuristics space for production scheduling. It also shows how surrogate techniques and assisted task selection strategies can benefit multitask learning with GP for learning heuristics in the context of production scheduling. Part VI rounds out the text with an outlook on the future.

Given its scope, the book benefits scientists, engineers, researchers, practitioners, postgraduates, and undergraduates in the areas of machine learning, artificial intelligence, evolutionary computation, operations research, and industrial engineering.

Contents

Part I Introduction.- 1 Introduction.- 2 Preliminaries.- Part II Genetic Programming for Static Production Scheduling Problems.- 3 Learning Schedule Construction Heuristics.- 4 Learning Schedule Improvement Heuristics.- 5 Learning to Augment Operations Research Algorithms.- Part III Genetic Programming for Dynamic Production Scheduling Problems.- 6 Representations with Multi-tree and Cooperative Coevolution.- 7 Efficiency Improvement with Multi-fidelity Surrogates.- 8 Search Space Reduction with Feature Selection.- 9 Search Mechanism with Specialised Genetic Operators.- Part IV Genetic Programming for Multi-objective Production Scheduling Problems.- 10 Learning Heuristics for Multi-objective Dynamic Production Scheduling Problems.- 11 Cooperative Coevolutionary for Multi-objective Production Scheduling Problems.- 12 Learning Scheduling Heuristics for Multi-objective Dynamic Flexible Job Shop Scheduling.- Part V Multitask Genetic Programming for Production Scheduling Problems.- 13 Multitask Learning in Hyper-heuristic Domain with Dynamic Production Scheduling.- 14 Adaptive Multitask Genetic Programming for Dynamic Job Shop Scheduling.- 15 Surrogate-Assisted Multitask Genetic Programming for Learning Scheduling Heuristics.- Part VI Conclusions and Prospects.- 16 Conclusions and Prospects.

最近チェックした商品