倉西構造と仮想基本チェイン<br>Kuranishi Structures and Virtual Fundamental Chains (Springer Monographs in Mathematics)

個数:

倉西構造と仮想基本チェイン
Kuranishi Structures and Virtual Fundamental Chains (Springer Monographs in Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 638 p.
  • 言語 ENG
  • 商品コード 9789811555619
  • DDC分類 516

Full Description

The package of Gromov's pseudo-holomorphic curves is a major tool in global symplectic geometry and its applications, including mirror symmetry and Hamiltonian dynamics. The Kuranishi structure was introduced by two of the authors of the present volume in the mid-1990s to apply this machinery on general symplectic manifolds without assuming any specific restrictions. It was further amplified by this book's authors in their monograph Lagrangian Intersection Floer Theory and in many other publications of theirs and others. Answering popular demand, the authors now present the current book, in which they provide a detailed, self-contained explanation of the theory of Kuranishi structures.
Part I discusses the theory on a single space equipped with Kuranishi structure, called a K-space, and its relevant basic package. First, the definition of a K-space and maps to the standard manifold are provided. Definitions are given for fiber products, differentialforms, partitions of unity, and the notion of CF-perturbations on the K-space. Then, using CF-perturbations, the authors define the integration on K-space and the push-forward of differential forms, and generalize Stokes' formula and Fubini's theorem in this framework. Also, "virtual fundamental class" is defined, and its cobordism invariance is proved.
Part II discusses the (compatible) system of K-spaces and the process of going from "geometry" to "homological algebra". Thorough explanations of the extension of given perturbations on the boundary to the interior are presented. Also explained is the process of taking the "homotopy limit" needed to handle a system of infinitely many moduli spaces. Having in mind the future application of these chain level constructions beyond those already known, an axiomatic approach is taken by listing the properties of the system of the relevant moduli spaces and then a self-contained account of the construction of the associated algebraic structures is given. This axiomatic approach makes the exposition contained here independent of previously published construction of relevant structures. 

Contents

1.Introduction.- 2.Notations and conventions.- 3.Kuranishi structure and good coordinate system.- 4.Fiber product of Kuranishi structures.- 5.Thickening of a Kuranishi structure.-  6.Multivalued perturbation.-  7.CF-perturbation and integration along the fiber (pushout).- 8.Stokes' formula.- 9.From good coordinate system to Kuranishi structure and back with CF-perturbations.- 10.Composition formula of smooth correspondences.- 11.Construction of good coordinate system.- 12.Construction of CF-perturbations.- 13.Construction of multivalued perturbations.- 14.Zero and one dimensional cases via multivalued perturbation.- 15.Introduction to Part 2.- 16.Linear K-system: Floer cohomology I: statement.- 17.Extension of Kuranishi structure and its perturbation from boundary to its neighborhood.- 18.Smoothing corners and composition of morphisms.- 19.Linear K-system: Floer cohomology II: proof.- 20.Linear K-system: Floer cohomology III: Morse case by multisection.- 21.Tree-like K-system: A1 structure I: statement.- 22.Tree-like K-system: A1 structure II: proof.- 23. Orbifold and orbibundle by local coordinate.- 24.Covering space of effective orbifold and K-space.-  25.Admissible Kuranishi structure.- 26.Stratified submersion to a manifold with corners.- 27.Local system and smooth correspondence in de Rham theory with twisted coefficients.- 28.Composition of KG and GG embeddings: Proof of Lemma 3.34.- 29.Global quotient and orbifold. 

最近チェックした商品