An Introduction to Nonlinear Analysis and Fixed Point Theory

個数:

An Introduction to Nonlinear Analysis and Fixed Point Theory

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 830 p.
  • 言語 ENG
  • 商品コード 9789811342615
  • DDC分類 515

Full Description

This book systematically introduces the theory of nonlinear analysis, providing an overview of topics such as geometry of Banach spaces, differential calculus in Banach spaces, monotone operators, and fixed point theorems. It also discusses degree theory, nonlinear matrix equations, control theory, differential and integral equations, and inclusions. The book presents surjectivity theorems, variational inequalities, stochastic game theory and mathematical biology, along with a large number of applications of these theories in various other disciplines. Nonlinear analysis is characterised by its applications in numerous interdisciplinary fields, ranging from engineering to space science, hydromechanics to astrophysics, chemistry to biology, theoretical mechanics to biomechanics and economics to stochastic game theory. Organised into ten chapters, the book shows the elegance of the subject and its deep-rooted concepts and techniques, which provide the tools for developing more realistic and accurate models for a variety of phenomena encountered in diverse applied fields. It is intended for graduate and undergraduate students of mathematics and engineering who are familiar with discrete mathematical structures, differential and integral equations, operator theory, measure theory, Banach and Hilbert spaces, locally convex topological vector spaces, and linear functional analysis.

Contents

​Chapter 1. Fundamentals.- Chapter 2. Geometry in Banach Spaces and Duality Mappings.- Chapter 3. Differential Calculus in Banach Spaces.- Chapter 4. Monotone Operators, Phi-accretive Operators and Their Generalizations.- Chapter 5. Fixed Point Theorems.- Chapter 6. Degree Theory, K-Set Contractions and Condensing Operators.- Chapter 7. Random Fixed Point Theory and Monotone Operators.- Chapter 8. Applications of Monotone Operator Theory to Differential and Integral Equations.- Chapter 9. Applications of Fixed Point Theorems.- Chapter 10. Applications of Fixed Point Theorems for Multifunction to Integral Inclusions.

最近チェックした商品