音楽数学概論<br>Compendium of Musical Mathematics, a

個数:

音楽数学概論
Compendium of Musical Mathematics, a

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 288 p.
  • 言語 ENG
  • 商品コード 9789811284366
  • DDC分類 780.051

Full Description

The purpose of this book is to provide a concise introduction to the mathematical theory of music, opening each chapter to the most recent research. Despite the complexity of some sections, the book can be read by a large audience. Many examples illustrate the concepts introduced. The book is divided into 9 chapters.In the first chapter, we tackle the question of the classification of chords and scales. Chapter 2 is a mathematical presentation of David Lewin's Generalized Interval Systems. Chapter 3 offers a new theory of diatonicity in equal-tempered universes. Chapter 4 presents the Neo-Riemannian theories based on the work of David Lewin, Richard Cohn and Henry Klumpenhouwer. Chapter 5 is devoted to the application of word combinatorics to music. Chapter 6 studies the rhythmic canons and the tessellation of the line. Chapter 7 is devoted to serial knots. Chapter 8 presents combinatorial designs and their applications to music. The last chapter, chapter 9, is dedicated to the study of tuning systems.

最近チェックした商品