Operator Theory and Analysis of Infinite Networks (Contemporary Mathematics and Its Applications: Monographs, Expositions and Lecture Notes)

個数:

Operator Theory and Analysis of Infinite Networks (Contemporary Mathematics and Its Applications: Monographs, Expositions and Lecture Notes)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 448 p.
  • 言語 ENG
  • 商品コード 9789811265518
  • DDC分類 515.7

Full Description

This volume considers resistance networks: large graphs which are connected, undirected, and weighted. Such networks provide a discrete model for physical processes in inhomogeneous media, including heat flow through perforated or porous media. These graphs also arise in data science, e.g., considering geometrizations of datasets, statistical inference, or the propagation of memes through social networks. Indeed, network analysis plays a crucial role in many other areas of data science and engineering. In these models, the weights on the edges may be understood as conductances, or as a measure of similarity. Resistance networks also arise in probability, as they correspond to a broad class of Markov chains.The present volume takes the nonstandard approach of analyzing resistance networks from the point of view of Hilbert space theory, where the inner product is defined in terms of Dirichlet energy. The resulting viewpoint emphasizes orthogonality over convexity and provides new insights into the connections between harmonic functions, operators, and boundary theory. Novel applications to mathematical physics are given, especially in regard to the question of self-adjointness of unbounded operators.New topics are covered in a host of areas accessible to multiple audiences, at both beginning and more advanced levels. This is accomplished by directly linking diverse applied questions to such key areas of mathematics as functional analysis, operator theory, harmonic analysis, optimization, approximation theory, and probability theory.

最近チェックした商品