Fact or Fluke? : A Critical Look at Statistical Evidence

個数:
  • ポイントキャンペーン

Fact or Fluke? : A Critical Look at Statistical Evidence

  • ウェブストア価格 ¥6,816(本体¥6,197)
  • Amsterdam University Press(2022/06発売)
  • 外貨定価 UK£ 23.95
  • 【ウェブストア限定】ブラックフライデーポイント5倍対象商品(~11/24)※店舗受取は対象外
  • ポイント 305pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 184 p.
  • 言語 ENG
  • 商品コード 9789463723497

Full Description

Statistics is more topical than ever. Numerous decisions depend on statistical considerations: just think of the Corona crisis or decisions about approving new drugs or other products. If researchers announce they have proved some fact using statistical tests, can we then always be sure that their claim is correct? How, and more importantly why, does statistics work? What can we expect from statistics and what not? 'Fact or Fluke?' is not a textbook that explains statistical tests to the reader; instead, it discusses what comes before those tests: the philosophy behind the statistics. Should one carry out tests, or are there other ways to look at statistics?

Ronald Meester and Klaas Slooten use a variety of examples - from court cases to theoretical physics - to present different views on statistics and provide arguments for what they think is the best point of view. This book is meant for anyone who is in some way concerned with, or interested in, statistical evidence: scientific researchers, students, teachers, mathematicians, philosophers, lawyers, managers, and no doubt many others.

Contents

Preface, Prologue, Part I Classical Statistics 1. Significance Testing 1.1 Testing the Null Hypothesis and Statistical Significance 1.2 The Logic of Significance Testing: In the Words of Fisher 1.3 Significance Testing Ignores the Context 1.4 Back to Sally Clark 2. p-Values 2.1 What Is a p-value? 2.2 The Main Problem with p-Values 2.3 Publication Bias 2.4 One-Tailed Versus Two-Tailed: A Paradox 2.5 The p-Value in Adaptive Sampling Studies 2.6 More on Adaptive Sampling Studies 3. Confidence Intervals 3.1 What Is a Confidence Interval? 3.2 Confidence Intervals, p-Values, and Effect Size 3.3 Dependence on the Experimental Setup 3.4 Strange (and Amusing) Confidence Intervals Part II A Bayesian Approach 4. What Is Statistical Evidence? 4.1 The Likelihood Ratio 4.2 Likelihood Ratios for an Unknown Probability of Success 4.3 The Likelihood Ratio Solves Problems with p-Values 74.4 The Interpretation of the Likelihood Ratio 4.5 p-Values versus Likelihood Ratios 4.6 Likelihood Ratios and Power 5. Evidence and Belief 5.1 Alternative Hypotheses and Context 5.2 A Return to Ioannidis' Argument 5.3 An Anecdotal Cards Example 5.4 A Philosophical Interlude 5.5 Worked-Out Examples - Credibility Intervals 5.6 Laypersons and the Prior 5.7 Objective Bayes? 5.8 A Few Conclusions 6. The Likelihood Ratio and the Experimental Setup 6.1 Error Probabilities and Misleading Evidence 6.2 How Often Does Misleading Evidence Occur? 6.3 Likelihood Ratios and Designing an Experimental Setup 6.4 Conclusions Part III Statistics in Practice 7. Two Worked-Out Examples 7.1 Face Masks 7.2 The Lucia de Berk Case 8. Sometimes p-Values Can Be Justified 8.1 Elementary Particles in Theoretical Physics 8.2 Model Validation, Appendix, Bibliography, Index

最近チェックした商品