Real-World Reasoning: toward Scalable, Uncertain Spatiotemporal, Contextual and Causal Inference (Atlantis Thinking Machines) (2011)

個数:

Real-World Reasoning: toward Scalable, Uncertain Spatiotemporal, Contextual and Causal Inference (Atlantis Thinking Machines) (2011)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 269 p.
  • 言語 ENG
  • 商品コード 9789462390539
  • DDC分類 004

Full Description

The general problem addressed in this book is a large and important one: how to usefully deal with huge storehouses of complex information about real-world situations. Every one of the major modes of interacting with such storehouses - querying, data mining, data analysis - is addressed by current technologies only in very limited and unsatisfactory ways. The impact of a solution to this problem would be huge and pervasive, as the domains of human pursuit to which such storehouses are acutely relevant is numerous and rapidly growing. Finally, we give a more detailed treatment of one potential solution with this class, based on our prior work with the Probabilistic Logic Networks (PLN) formalism. We show how PLN can be used to carry out realworld reasoning, by means of a number of practical examples of reasoning regarding human activities inreal-world situations.

Contents

Introduction.- Knowledge Representation Using Formal Logic.- Quantifying and Managing Uncertainty.- Representing Temporal Knowledge.- Temporal Reasoning.- Representing and Reasoning On Spatial Knowledge.- Representing and Reasoning on Contextual Knowledge.- Causal Reasoning.- Extracting Logical Knowledge from Raw Data.- Scalable Spatiotemporal Logical Knowledge Storage.- Mining Patterns from Large Spatiotemporal Logical Knowledge Stores.- Probabilistic Logic Networks.- Temporal and Contextual Reasoning in PLN.- Inferring the Causes of Observed Changes.-Adaptive Inference Control.

最近チェックした商品