Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations (Scientific Computation)

個数:
  • ポイントキャンペーン

Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations (Scientific Computation)

  • ウェブストア価格 ¥26,172(本体¥23,793)
  • Springer(2018/06発売)
  • 外貨定価 US$ 129.99
  • ゴールデンウィーク ポイント2倍キャンペーン対象商品(5/6まで)
  • ポイント 474pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 381 p.
  • 言語 ENG
  • 商品コード 9789402414028
  • DDC分類 004

Full Description

This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell's system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell's system and the important problem of its spurious-free approximations. Treatment of unbounded domains by Absorbing Boundary Conditions (ABC) and Perfectly Matched Layers (PML) is described and analyzed in a separate chapter. The two last chapters deal with time approximation including local time-stepping and with the study of some complex models, i.e. acoustics in flow, gravity waves and vibrating thin plates. Throughout, emphasis is put on the accuracy and computational efficiency of the methods, with attention brought to their practical aspects.This monograph also covers in details the theoretical foundations and numerical analysis of these methods. As a result, this monograph will be of interest to practitioners, researchers, engineers and graduate students involved in the numerical simulationof waves.

Contents

Classical Continuous Models and their Analysis.- The Basic Equations.- Functional Issues.- Plane Wave Solutions.- Definition of Different Types of Finite Elements.- 1D Mass-Lumping and Spectral Elements.-  Quadrilaterals and Hexahedra.- Triangles and Tetrahedra.- Purely 3D Elements.- Tetrahedral and Triangular Edge Elements.- Hexahedral and Quadrilateral Edge Elements.- H(div) Finite Elements.- Other Mixed Elements.- Hexahedral and Quadrilateral Spectral Elements for Acoustic Waves.- Second Order Formulation of the Acoustics Equation.- First Order Formulation of the Acoustics Equation.- Comparison of the Methods.- Dispersion Relation.- Reflection-Transmission by a Discontinuous Interface.- hp-a priori Error Estimates.- The Linear Elastodynamics System.- Discontinuous Galerkin Methods.- General Formulation for Linear Hyperbolic Problems.- Approximation by Triangles and Tetrahedra.- Approximation by Quadrilaterals and Hexahedra.- Comparison of the DG Methods for Maxwell's Equations.- Plane Wave Analysis.- Interior Penalty Discontinuous Galerkin Methods.- The Maxwell's System and Spurious Modes.-A First Model and its Approximation.- A Second Model and its Approximations.- Suppressing Spurious Modes.- Error Estimates for DGM.- Approximating Unbounded Domains.- Absorbing Boundary Conditions (ABC).- Perfectly Matched Layers (PML).- Time Approximation.- Schemes with a Constant Time-Step.- Local Time Stepping.- Some Complex Models.- The Linearized Euler Equations.- The Linear Cauchy-Poisson Problem.- Vibrating Thin Plates.- References.- Bibliography.

最近チェックした商品