Image Textures and Gibbs Random Fields (Computational Imaging and Vision)

個数:

Image Textures and Gibbs Random Fields (Computational Imaging and Vision)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 251 p.
  • 言語 ENG
  • 商品コード 9789401059121
  • DDC分類 006

Full Description

Image analysis is one of the most challenging areas in today's computer sci­ ence, and image technologies are used in a host of applications. This book concentrates on image textures and presents novel techniques for their sim­ ulation, retrieval, and segmentation using specific Gibbs random fields with multiple pairwise interaction between signals as probabilistic image models. These models and techniques were developed mainly during the previous five years (in relation to April 1999 when these words were written). While scanning these pages you may notice that, in spite of long equa­ tions, the mathematical background is extremely simple. I have tried to avoid complex abstract constructions and give explicit physical (to be spe­ cific, "image-based") explanations to all the mathematical notions involved. Therefore it is hoped that the book can be easily read both by professionals and graduate students in computer science and electrical engineering who take an interest in image analysis and synthesis. Perhaps, mathematicians studying applications of random fields may find here some less traditional, and thus controversial, views and techniques.

Contents

Instead of introduction.- 1 Texture, Structure, and Pairwise Interactions.- 1.1 Human and computational views.- 1.2 Spatial homogeneity, or self-similarity of textures.- 1.3 Basic notation and notions.- 1.4 Random fields and probabilistic image modelling.- 1.5 Physics and image modelling: what an interaction means.- 1.6 GPDs and exponential families of distributions.- 1.7 Stochastic relaxation and stochastic approximation.- 2 Markov and Non-Markov Gibbs Image Models.- 2.1 Traditional Markov/Gibbs image models.- 2.2 Generalized Gibbs models of homogeneous textures.- 2.3 Prior Markov/Gibbs models of region maps.- 2.4 Piecewise-homogeneous textures.- 2.5 Basic features of the models.- 3 Supervised MLE-Based Parameter Learning.- 3.1 Affine independence of sample histograms.- 3.2 MLE of Gibbs potentials.- 3.3 Analytic first approximation of potentials.- 3.4 Most characteristic interaction structure.- 3.5 Stochastic approximation to refine potentials.- 4 Supervised Conditional MLE-Based Learning.- 4.1 The least upper bound condition.- 4.2 Potentials in analytic form.- 4.3 Practical consistency of the MLEs.- 5 Experiments in Simulating Natural Textures.- 5.1 Comparison of natural and simulated textures.- 5.2 "Brodatz" image database.- 5.3 Interaction maps and texture features.- 5.4 CSA vs. traditional modelling scenario.- 5.5 "MIT VisTex" image database.- 6 Experiments in Retrieving Natural Textures.- 6.1 Query-by-image texture retrieval.- 6.2 Similarity under scale and orientation variations.- 6.3 Matching two textures.- 6.4 Experiments with natural textures.- 6.5 Complexity and practicality.- 7 Experiments in Segmenting Natural Textures.- 7.1 Initial and final segmentation.- 7.2 Artificial collages of Brodatz textures.- 7.3 Natural piecewise-homogeneous images.- 7.4How to choose an interaction structure.- 7.5 Do Gibbs models learn what we expect?.- Texture Modelling: Theory vs. Heuristics.- References.

最近チェックした商品