Modelling and Applications of Transport Phenomena in Porous Media (Theory and Applications of Transport in Porous Media)

個数:

Modelling and Applications of Transport Phenomena in Porous Media (Theory and Applications of Transport in Porous Media)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 381 p.
  • 言語 ENG
  • 商品コード 9789401051637
  • DDC分類 550

Full Description

Transport phenomenain porous media are encounteredin various disciplines, e. g. , civil engineering, chemical engineering, reservoir engineering, agricul­ tural engineering and soil science. In these disciplines, problems are en­ countered in which various extensive quantities, e. g. , mass and heat, are transported through a porous material domain. Often, the void space of the porous material contains two or three fluid phases, and the various ex­ tensive quantities are transported simultaneously through the multiphase system. In all these disciplines, decisions related to a system's development and its operation have to be made. To do so a tool is needed that will pro­ vide a forecast of the system's response to the implementation of proposed decisions. This response is expressed in the form of spatial and temporal distributions of the state variables that describe the system's behavior. Ex­ amples of such state variables are pressure, stress, strain, density, velocity, solute concentration, temperature, etc. , for each phase in the system, The tool that enables the required predictions is the model. A model may be defined as a simplified version of the real porous medium system and the transport phenomena that occur in it. Because the model is a sim­ plified version of the real system, no unique model exists for a given porous medium system. Different sets of simplifying assumptions, each suitable for a particular task, will result in different models.

Contents

1 EIGHT LECTURES ON MATHEMATICAL MODELLING OF TRANSPORT IN POROUS MEDIA.- 1.1 Lecture One: Introduction.- 1.2 Lecture Two: Microscopic Balance Equations.- 1.3 Lecture Three: Macroscopic Balance Equations.- 1.4 Lecture Four: Advective Flux.- 1.5 Lecture Five: Complete Transport Model.- 1.6 Lecture Six: Modelling Mass Transport of a Single Fluid Phase Under Isothermal Conditions.- 1.8 Lecture Eight: Modelling Contaminant Transport.- References.- List of Main Symbols.- 2 MULTIPHASE FLOW IN POROUS MEDIA Th. DRACOS Swiss Federal Inst. of Technology (E.T.H.) Zurich, Switzerland.- 2.1 Capillary Pressure.- 2.2 Flow Equations for Immiscible Fluids.- 2.3 Mass Balance Equations.- 2.4 Simultaneous Flow of Two Fluids having a Small Density Difference.- 2.5 Measurement of the relations pc?i(S?i), and kr,?i(S?i).- 2.6 Mathematical descripton of the relations between pc,wSwand k,r,w.- 2.7 Complete Statement of Multiphase Flow Problems.- 2.8 Solute transport in multiphase flow through porous media.- References.- List of Main Symbols.- 3 PHASE CHANGE PHENOMENA AT LIQUID SATURATED SELF HEATED PARTICULATE BEDS J-M. BUCHLIN and A. STUBOS von Karman Institute for Fluid Dynamics Rhode Saint Genèse B-1640, Belgium.- 3.1 Introduction.- 3.2 Preboiling Phenomenology.- 3.3 Boiling regime and dryout heat flux.- 3.4 Constitutive Relationships-Bed Disturbances.- 3.5 Conclusions.- A. Zero-Dimensional Model.- B. Fractional downward heat flux by conduction.- C. Sub cooled zone thickness at the top of the bed.- References.- List of Main Symbols.- 4 HEAT TRANSFER IN SELF-HEATED PARTICLE BEDS SUBMERGED IN LIQUID COOLANT KENT MEHR and JORGEN WÜRTZ Commission of the European Communities Joint Research Centre, Ispra, Italy.- 4.1 The PAHR Scenario.- 4.2 Specific PAHR Phenomena.- 4.3 PAHR-2D.- 4.4 In-pileexperiments.- References.- List of Main Symbols.- 5 PHYSICAL MECHANISMS DURING THE DRYING OF A POROUS MEDIUM CH. MOYNE, CH. BASILICO, J. CH. BATSALE and A._DEGIOVANNI. Laboratoire d'Energétique et de Mécanique Théorique et Appliquée U.A. C.N.R.S. 875, Ecoles des Mines, Nancy, France.- 5.1 General Aspects of the Drying Process.- 5.2 A General Model for Simultaneous Heat and Mass Transfer in a Porous Medium.- 5.3 Application to Drying.- 5.4 Conclusions.- References.- List of Main Symbols.- 6 STOCHASTIC DESCRIPTION OF POROUS MEDIA G. DE MARSILY Ecole des Mines de Paris, l'Université Pierre et Marie Curie Paris, France.- 6.1 Definition of Properties of Porous Media: The Example of Porosity.- 6.2 Stochastic Approach to Permeability and Spatial Variability.- 6.3 Stochastic Partial Differential Equations.- 6.4 Example of stochastic solution to the transport equation.- 6.5 The problem of estimation of a RF by kriging.- 6.6 The intrinsic hypothesis: definition of the variogram.- 6.7 Conclusions.- References.- List of Main Symbols.

最近チェックした商品