Treatise on Classical Elasticity : Theory and Related Problems (Mathematical and Analytical Techniques with Applications to Engineering) (2013)

個数:

Treatise on Classical Elasticity : Theory and Related Problems (Mathematical and Analytical Techniques with Applications to Engineering) (2013)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 802 p.
  • 言語 ENG
  • 商品コード 9789400793392
  • DDC分類 530

Full Description

Deformable solids have a particularly complex character; mathematical modeling is not always simple and often leads to inextricable difficulties of computation. One of the simplest mathematical models and, at the same time, the most used model, is that of the elastic body - especially the linear one. But, notwithstanding its simplicity, even this model of a real body may lead to great difficulties of computation.

The practical importance of a work about the theory of elasticity, which is also an introduction to the mechanics of deformable solids, consists of the use of scientific methods of computation in a domain in which simplified methods are still used.

This treatise takes into account the consideration made above, with special attention to the theoretical study of the state of strain and stress of a deformable solid. The book draws on the known specialized literature, as well as the original results of the author and his 50+ years experience as Professor of Mechanics and Elasticity at the University of Bucharest. The construction of mathematical models is made by treating geometry and kinematics of deformation, mechanics of stresses and constitutive laws. Elastic, plastic and viscous properties are thus put in evidence and the corresponding theories are developed. Space problems are treated and various particular cases are taken into consideration. New solutions for boundary value problems of finite and infinite domains are given and a general theory of concentrated loads is built. Anisotropic and non-homogeneous bodies are studied as well. Cosserat type bodies are also modeled. The connection with thermal and viscous phenomena will be considered too.

Audience: researchers in applied mathematics, mechanical and civil engineering.

Contents

Preface.- 1: Introduction.- 2: Geometry and Kinematics of Deformation.- 3: Mechanics of Stresses.- 4: Mathematical Models in Mechanics of Deformable Solids.- 5: General Equations of the Theory of Elasticity. Formulation of Problems.- 6: Principles and General Theorems of the Theory of Elasticity. Computation Methods.- 7: Introduction to the Theory of Cosserat type Bodies.- 8: Theory of Concentrated Loads.- 9: Elastic Space. Elastic Half-space.- 10:  Elastic Eights-space. Elastic Quarter-space.- 11: Elastic Parallelepiped. Elastic Strip. Elastic Layer. Thick Plate.- 12: Dynamical Problems of Elastic Bodies.- 13: Particular Cases of States of Strain and Stress.- 14: Anisotropic and Non-homogeneous Bodies.- 15: Introduction to Thermoelasticity.- 16: Introduction to Linear Viscoelasticity.- A: Appendix.- 1: Elements of Tensor Calculus.- 2: Curvilinear Coordinates.- 3: Elements of the Theory of Distributions.- 4: Notations and Integrals.- Subject Index.- Name Index.

最近チェックした商品