Blind Speech Separation (Signals and Communication Technology)

個数:

Blind Speech Separation (Signals and Communication Technology)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 448 p.
  • 言語 ENG
  • 商品コード 9789048176519
  • DDC分類 621

Full Description

We are surrounded by sounds. Such a noisy environment makes it di?cult to obtain desired speech and it is di?cult to converse comfortably there. This makes it important to be able to separate and extract a target speech signal from noisy observations for both man-machine and human-human communication. Blindsourceseparation(BSS)isanapproachforestimatingsourcesignals using only information about their mixtures observed in each input channel. The estimation is performed without possessing information on each source, such as its frequency characteristics and location, or on how the sources are mixed. The use of BSS in the development of comfortable acoustic com- nication channels between humans and machines is widely accepted. Some books have been published on BSS, independent component ana- sis (ICA), and related subjects. There, ICA-based BSS has been well studied in the statistics and information theory ?elds, for applications to a variety of disciplines including wireless communication and biomedicine. However, as speech and audio signal mixtures in a real reverberant environment are generally convolutive mixtures, they involve a structurally much more ch- lenging task than instantaneous mixtures, which are prevalent in many other applications.

Contents

Multiple Microphone Blind Speech Separation with ICA.- Convolutive Blind Source Separation for Audio Signals.- Frequency-Domain Blind Source Separation.- Blind Source Separation using Space-Time Independent Component Analysis.- TRINICON-based Blind System Identification with Application to Multiple-Source Localization and Separation.- SIMO-Model-Based Blind Source Separation - Principle and its Applications.- Independent Vector Analysis for Convolutive Blind Speech Separation.- Relative Newton and Smoothing Multiplier Optimization Methods for Blind Source Separation.- Underdetermined Blind Speech Separation with Sparseness.- The DUET Blind Source Separation Algorithm.- K-means Based Underdetermined Blind Speech Separation.- Underdetermined Blind Source Separation of Convolutive Mixtures by Hierarchical Clustering and L1-Norm Minimization.- Bayesian Audio Source Separation.- Single Microphone Blind Speech Separation.- Monaural Source Separation.- Probabilistic Decompositions of Spectra for Sound Separation.- Sparsification for Monaural Source Separation.- Monaural Speech Separation by Support Vector Machines: Bridging the Divide Between Supervised and Unsupervised Learning Methods.

最近チェックした商品