Positive Trigonometric Polynomials and Signal Processing Applications

個数:

Positive Trigonometric Polynomials and Signal Processing Applications

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 256 p.
  • 言語 ENG
  • 商品コード 9789048172887
  • DDC分類 620

Full Description

This book gathers the main recent results on positive trigonometric polynomials within a unitary framework. The book has two parts: theory and applications. The theory of sum-of-squares trigonometric polynomials is presented unitarily based on the concept of Gram matrix (extended to Gram pair or Gram set). The applications part is organized as a collection of related problems that use systematically the theoretical results.

Contents

1. Positive polynomials. 1.1 Types of polynomials. 1.2 Positive polynomials. 1.3 Toeplitz positivity conditions. 1.4 Positivity on an interval. 1.5 Details and other facts. 1.6 Bibliographical and historical notes. 2. Gram matrix representation. 2.1 Parameterization of trigonometric polynomials. 2.2 Optimization using the trace parameterization. 2.3 Toeplitz quadratic optimization. 2.4 Duality. 2.5 Kalman-Yakubovich-Popov lemma. 2.6 Spectral factorization from a Gram matrix. 2.7 Parameterization of real polynomials. 2.8 Choosing the right basis. 2.9 Interpolation representations. 2.10 Mixed representations. 2.11 Fast algorithms. 2.12 Details and other facts. 2.13 Bibliographical and historical notes. 3. Multivariate polynomials. 3.1 Multivariate polynomials. 3.2 Sum-of-squares multivariate polynomials. 3.3 Sum-of-squares of real polynomials. 3.4 Gram matrices of trigonometric polynomials. 3.5 Sum-of-squares relaxations. 3.6 Gram matrices from partial bases. 3.7 Gram matrices of real multivariate polynomials. 3.8 Pairs of relaxations. 3.9 The Gram pair parameterization. 3.10 Polynomials with matrix coefficients. 3.11 Details and other facts. 3.12 Bibliographical and historical notes. 4. Polynomials positive on domains. 4.1 Real polynomials positive on compact domains. 4.2 Polynomials positive on frequency domains. 4.3 Bounded Real Lemma. 4.4 Positivstellensatz. 4.5 Details and other facts. 4.6 Bibliographical and historical notes. 5. Design of FIR filters. 5.1 Design of FIR filters. 5.2 Design of 2-D FIR filters. 5.3 FIR deconvolution. 5.4 Bibliographical and historical notes. 6. Orthogonal filterbanks. 6.1 Two-channel filterbanks. 6.2 Signal-adapted wavelets. 6.3 GDFT modulated filterbanks. 6.4 Bibliographical and historical notes. 7. Stability. 7.1 Multidimensional stability tests. 7.2 Robust stability. 7.3 Convex stability domains. 7.4 Bibliographical and historical notes. 8. Design of IIR filters. 8.1 Magnitude design of IIR filters. 8.2 Approximate linear-phase designs. 8.3 2D IIR filter design. 8.4 Bibliographical and historical notes Appendix A: semidefinite programming. Appendix B: spectral factorization. References.

最近チェックした商品