Elasticity of Transversely Isotropic Materials (Solid Mechanics and Its Applications)

個数:

Elasticity of Transversely Isotropic Materials (Solid Mechanics and Its Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 448 p.
  • 言語 ENG
  • 商品コード 9789048170180
  • DDC分類 621

Full Description

This book aims to provide a comprehensive introduction to the theory and applications of the mechanics of transversely isotropic elastic materials. There are many reasons why it should be written. First, the theory of transversely isotropic elastic materials is an important branch of applied mathematics and engineering science; but because of the difficulties caused by anisotropy, the mathematical treatments and descriptions of individual problems have been scattered throughout the technical literature. This often hinders further development and applications. Hence, a text that can present the theory and solution methodology uniformly is necessary. Secondly, with the rapid development of modern technologies, the theory of transversely isotropic elasticity has become increasingly important. In addition to the fields with which the theory has traditionally been associated, such as civil engineering and materials engineering, many emerging technologies have demanded the development of transversely isotropic elasticity. Some immediate examples are thin film technology, piezoelectric technology, functionally gradient materials technology and those involving transversely isotropic and layered microstructures, such as multi-layer systems and tribology mechanics of magnetic recording devices. Thus a unified mathematical treatment and presentation of solution methods for a wide range of mechanics models are of primary importance to both technological and economic progress.

Contents

Basic Equations of Anisotropic Elasticity.- General Solution for Transversely Isotropic Problems.- Problems for Infinite Solids.- Half-Space and Layered Media.- Equilibrium of Bodies of Revolution.- Thermal Stresses.- Frictional Contact.- Bending, Vibration and Stability of Plates.- Vibrations of Cylinders and Cylindrical Shells of Transversely Isotropic Materials.- Spherical Shells of Spherically Isotropic Materials.