Arithmetic and Ontology : A Non-Realist Philosophy of Arithmetic. Edited by Pieranna Garavaso (Arithmetic and Ontology)

個数:

Arithmetic and Ontology : A Non-Realist Philosophy of Arithmetic. Edited by Pieranna Garavaso (Arithmetic and Ontology)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 393 p.
  • 言語 ENG
  • 商品コード 9789042020474
  • DDC分類 511.322

基本説明

This volume documents a lively exchange between five philosophers of mathematics.

Full Description

This volume documents a lively exchange between five philosophers of mathematics. It also introduces a new voice in one central debate in the philosophy of mathematics. Non-realism, i.e., the view supported by Hugly and Sayward in their monograph, is an original position distinct from the widely known realism and anti-realism. Non-realism is characterized by the rejection of a central assumption shared by many realists and anti-realists, i.e., the assumption that mathematical statements purport to refer to objects. The defense of their main argument for the thesis that arithmetic lacks ontology brings the authors to discuss also the controversial contrast between pure and empirical arithmetical discourse. Colin Cheyne, Sanford Shieh, and Jean Paul Van Bendegem, each coming from a different perspective, test the genuine originality of non-realism and raise objections to it. Novel interpretations of well-known arguments, e.g., the indispensability argument, and historical views, e.g. Frege, are interwoven with the development of the authors' account. The discussion of the often neglected views of Wittgenstein and Prior provide an interesting and much needed contribution to the current debate in the philosophy of mathematics.

Contents

Acknowledgments
Editor's Introduction
Philip HUGLY and Charles SAYWARD: Arithmetic and Ontology a Non-Realist Philosophy of Arithmetic
Preface
Analytical
Chapter 1. Introduction
Part One: Beginning with Frege
Chapter 2. Notes to Grundlagen
Chapter 3. Objectivism and Realism in Frege's Philosophy of Arithmetic
Part Two: Arithmetic and Non-Realism
Chapter 4. The Peano Axioms
Chapter 5. Existence, Number, and Realism
Part Three: Necessity and Rules
Chapter 6. Arithmetic and Necessity
Chapter 7. Arithmetic and Rules
Part Four: The Three Theses
Chapter 8. Thesis One
Chapter 9. Thesis Two
Chapter 10. Thesis Three
References
Commentaries
Colin Cheyne, Numbers, Reference, and Abstraction
Sanford Shieh, What Is Non-Realism about Arithmetic?
Jean Paul Van Bendegem, Non-Realism, Nominalism and Strict Fi-nitism. The Sheer Complexity of It All

Replies to Commentaries
Philip Hugly and Charles Sayward, Replies to Commentaries
About the Contributors
Index

最近チェックした商品