Applied Data Analytics : Principles and Applications (River Publishers Series in Signal, Image and Speech Processing)

個数:
電子版価格
¥23,362
  • 電子版あり
  • ポイントキャンペーン

Applied Data Analytics : Principles and Applications (River Publishers Series in Signal, Image and Speech Processing)

  • ウェブストア価格 ¥28,371(本体¥25,792)
  • River Publishers(2020/05発売)
  • 外貨定価 US$ 130.00
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 1,285pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 300 p.
  • 言語 ENG
  • 商品コード 9788770220965
  • DDC分類 005.7

Full Description

The emergence of huge amounts of data which require analysis and in some cases real-time processing has forced exploration into fast algorithms for handling very lage data sizes. Analysis of x-ray images in medical applications, cyber security data, crime data, telecommunications and stock market data, health records and business analytics data are but a few areas of interest. Applications and platforms including R, RapidMiner and Weka provide the basis for analysis, often used by practitioners who pay little to no attention to the underlying mathematics and processes impacting the data. This often leads to an inability to explain results or correct mistakes, or to spot errors.

Applied Data Analytics - Principles and Applications seeks to bridge this missing gap by providing some of the most sought after techniques in big data analytics. Establishing strong foundations in these topics provides practical ease when big data analyses are undertaken using the widely available open source and commercially orientated computation platforms, languages and visualisation systems. The book, when combined with such platforms, provides a complete set of tools required to handle big data and can lead to fast implementations and applications.

The book contains a mixture of machine learning foundations, deep learning, artificial intelligence, statistics and evolutionary learning mathematics written from the usage point of view with rich explanations on what the concepts mean. The author has thus avoided the complexities often associated with these concepts when found in research papers. The tutorial nature of the book and the applications provided are some of the reasons why the book is suitable for undergraduate, postgraduate and big data analytics enthusiasts.

This text should ease the fear of mathematics often associated with practical data analytics and support rapid applications in artificial intelligence, environmental sensor data modelling and analysis, health informatics, business data analytics, data from Internet of Things and deep learning applications.

Contents

Chapter 1: Markov Chain and its Applications
Chapter 2: Hidden Markov Modelling
Chapter 3: Kalman Filters I
Chapter 4: Kalman Filters II
Chapter 5: Genetic Algorithms
Chapter 6: Introduction to Calculus on Computational Graphs
Chapter 7: Support Vector Machines
Chapter 8: Artificial Neural Networks
Chapter 9: Training of Neural Networks
Chapter 10: Recurrent Neural Networks
Chapter 11: Convolutional Neural Networks
Chapter 12: Probabilistic Neural Networks
Chapter 13: Finite State Machines
Chapter 14: Principal Component Analysis
Chapter 15: Moment Generating Functions
Chapter 16: Characteristic Functions
Chapter 17: Probability Generating Functions
Chapter 18: Digital Identity Management System Using Neural Networks

最近チェックした商品