Practical Guide to Machine Learning, NLP, and Generative AI: Libraries, Algorithms, and Applications (River Publishers Series in Rapids in Computing and Information Science and Technology)

個数:

Practical Guide to Machine Learning, NLP, and Generative AI: Libraries, Algorithms, and Applications (River Publishers Series in Rapids in Computing and Information Science and Technology)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 160 p.
  • 言語 ENG
  • 商品コード 9788770046534
  • DDC分類 006.3

Full Description

This is an essential resource for beginners and experienced practitioners in machine learning. This comprehensive guide covers a broad spectrum of machine learning topics, starting with an in-depth exploration of popular machine learning libraries. Readers will gain a thorough understanding of Scikit-learn, TensorFlow, PyTorch, Keras, and other pivotal libraries like XGBoost, LightGBM, and CatBoost, which are integral for efficient model development and deployment.

The book delves into various neural network architectures, providing readers with a solid foundation in understanding and applying these models. Beginning with the basics of the Perceptron and its application in digit classification, it progresses to more complex structures such as multilayer perceptrons for financial forecasting, radial basis function networks for air quality prediction, and convolutional neural networks (CNNs) for image classification. Additionally, the book covers recurrent neural networks (RNNs) and their variants like long short-term memory (LSTM) and gated recurrent units (GRUs), which are crucial for time-series analysis and sequential data applications.

Supervised machine learning algorithms are meticulously explained, with practical examples to illustrate their application. The book covers logistic regression and its use in predicting sports outcomes, decision trees for plant classification, random forests for traffic prediction, and support vector machines for house price prediction. Gradient boosting machines and their applications in genomics, AdaBoost for bioinformatics data classification, and extreme gradient boosting (XGBoost) for churn prediction are also discussed, providing readers with a robust toolkit for various predictive tasks.

Unsupervised learning algorithms are another significant focus of the book, introducing readers to techniques for uncovering hidden patterns in data. Hierarchical clustering for gene expression data analysis, principal component analysis (PCA) for climate predictions, and singular value decomposition (SVD) for signal denoising are thoroughly explained. The book also explores applications like robot navigation and network security, demonstrating the versatility of these techniques.

Natural language processing (NLP) is comprehensively covered, highlighting its fundamental concepts and various applications. The book discusses the overview of NLP, its fundamental concepts, and its diverse applications such as chatbots, virtual assistants, clinical NLP applications, and social media analytics. Detailed sections on text pre-processing, syntactic analysis, machine translation, text classification, named entity recognition, and sentiment analysis equip readers with the knowledge to build sophisticated NLP models.

The final chapters of the book explore generative AI, including generative adversarial networks (GANs) for image generation, variational autoencoders for vibrational encoder training, and autoregressive models for time series forecasting. It also delves into Markov chain models for text generation, Boltzmann machines for pattern recognition, and deep belief networks for financial forecasting. Special attention is given to the application of recurrent neural networks (RNNs) for generation tasks, such as wind power plant predictions and battery range prediction, showcasing the practical implementations of generative AI in various fields.

Contents

1. Machine Learning Libraries 2. Neural networks 3. Supervised Machine Learning 4. Unsupervised Learning Algorithms 5. Natural Language Tool Kit 6. Generative AI