Large Language Models selbst programmieren : Mit Python und PyTorch ein eigenes LLM entwickeln (2025. 414 S. 230 mm)

個数:

Large Language Models selbst programmieren : Mit Python und PyTorch ein eigenes LLM entwickeln (2025. 414 S. 230 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783988890443

Description


(Text)
Der Bestseller aus den USA jetzt in deutscher Übersetzung der ideale Einstieg in das Thema Large Language Models Auf dem eigenen Laptop entwickeln, trainieren und tunen Sie ein LLM, das mit GPT-2 vergleichbar ist, und bekommen dadurch einen tiefen Einblick in die Funktionsweise von LLMs Bestsellerautor Sebastian Raschka erklärt die Grundlagen und die Vorgehensweise Schritt für Schritt und sehr gut verständlich

Dieses Buch ist eine spannende Reise in die Blackbox der Generativen KI: Ohne auf bestehende LLM-Bibliotheken zurückzugreifen, programmieren Sie ein LLM-Basismodell im GPT-Stil auf dem eigenen Rechner. Sie entwickeln es zu einem Textklassifikator weiter und erstellen schließlich einen Chatbot, der Ihren Anweisungen folgt und den Sie als persönlichen KI-Assistenten verwenden können. Jeder Schritt wird mit klaren Beschreibungen, Diagrammen und Beispielen erklärt.

Auf diese Weise eignen Sie sich aktiv und ganz praktisch grundlegendes Wissen zur aktuell wichtigsten KI-Technologie an - denn Sie haben Ihren Chatbot selbst gebaut! Während Sie die einzelnen Phasen der LLM-Erstellung durchlaufen, entwickeln Sie eine klarere Vorstellung davon, wie LLMs unter der Haube funktionieren.

Sie erfahren, wie Sie
alle Bestandteile eines LLMs planen und programmieren einen für das LLM-Training geeigneten Datensatz vorbereiten das LLM mit Ihren eigenen Daten optimieren Feedback nutzen, um sicherzustellen, dass das LLM Ihren Anweisungen folgt vortrainierte Gewichte in das LLM laden
(Author portrait)
Sebastian Raschka, PhD, arbeitet sehr mehr als einem Jahrzehnt im Bereich Machine Learning und KI. Er ist Staff Research Engineer bei Lightning AI, wo er LLM-Forschung betreibt und Open-Source-Software entwickelt. Sebastian ist nicht nur Forscher, sondern hat auch eine große Leidenschaft für die Vermittlung von Wissen. Bekannt ist er für seine Bestseller zu Machine Learning mit Python und seine Beiträge zu Open Source.

最近チェックした商品