PyTorch kompakt : Syntax, Design Patterns und Codebeispiele für Deep-Learning-Modelle (Animals) (2021. 238 S. 240 mm)

個数:

PyTorch kompakt : Syntax, Design Patterns und Codebeispiele für Deep-Learning-Modelle (Animals) (2021. 238 S. 240 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783960091851

Description


(Text)
Kurzgefasstes und präzises Wissen zu dem populären Deep-Learning-FrameworkSowohl für PyTorch-Einsteiger:innen als auch für Fortgeschrittene nützlichÜberblick über Modellentwicklung, Deployment, das PyTorch-Ökosystem und über hilfreiche PyTorch-BibliothekenMit Kurzeinstieg in PyTorch
Dieses praktische Nachschlagewerk zu PyTorch, einem der beliebtesten Frameworks für Deep Learning, hält jederzeit präzises Wissen für Sie bereit. Joe Papa bietet Ihnen mit seiner Referenz den direkten Zugriff auf Syntax, Design Patterns und gut nachvollziehbare PyTorch-Codebeispiele. Das Buch enthält - neben einem PyTorch-Schnelleinstieg - eine Fülle von Informationen, die Ihre Entwicklungsarbeit verbessern und effizienter machen.

Data Scientists, Softwareentwickler:innen und Machine Learning Engineers finden in diesem Buch klaren, strukturierten PyTorch-Code, der jeden Schritt der Entwicklung neuronaler Netze abdeckt - vom Laden der Daten über die Anpassung von Trainingsschleifen bis hin zur Modelloptimierung und GPU-/TPU-Beschleunigung. Erfahren Sie außerdem, wie Sie Ihre ML-Modelle über AWS, Google Cloud oder Azure deployen und auf mobilen und Edge-Geräten bereitstellen.
Lernen Sie Tensoren und die grundlegende Syntax von PyTorch kennenErstellen Sie maßgeschneiderte Modelle sowie eigene Komponenten und Algorithmen für Deep LearningNutzen Sie Design Patterns zu Transfer Learning, Stimmungsanalyse oder Generative Adversarial Networks (GANs) für Ihre ProjekteTrainieren und deployen Sie Modelle sowohl auf GPUs als auch auf TPUsBeschleunigen Sie den Trainingsprozess durch Optimierung der Modelle und durch parallele und verteilte VerarbeitungInformieren Sie sich über nützliche PyTorch-Bibliotheken und das PyTorch-Ökosystem
(Author portrait)
Papa, JoeJoe Papa verfügt über 25 Jahre Erfahrung in Forschung und Entwicklung und ist Gründer von TeachMe.AI. Seinen Abschluss "Master of Science in Electrical Engineering" erwarb er an der Universität Rutgers. Bei Booz Allen Hamilton und Perspecta Labs leitete er KI-Forschungsteams, bei denen PyTorch intensiv eingesetzt wurde. Joe Papa hat Hunderte von Data Scientists als Mentor betreut und mehr als 6.000 Studierende auf der ganzen Welt auf Udemy unterrichtet.

最近チェックした商品