A Model-based Framework for Optimal Systems Integration of Adsorption Chillers (Aachener Beiträge zur Technischen Thermodynamik)

個数:

A Model-based Framework for Optimal Systems Integration of Adsorption Chillers (Aachener Beiträge zur Technischen Thermodynamik)

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 177 p.
  • 言語 ENG
  • 商品コード 9783958864061

Full Description

The global demand for cooling increases and poses a challenge for the stability of electrical grids and the emission targets. Thermally-driven adsorption chillers can meet this challenge by substituting electricity with thermal energy. However, although adsorption chillers are primarily driven by thermal energy, practical experience shows that the electricity savings often hardly compensate the electricity demand of the auxiliaries, such as pumps and fans. Thus, smart systems integration is crucial. Systems integration of adsorption chillers is challenging due to several features: (1) intrinsic dynamics; (2) close interaction between various system components; and (3) strong coupling of design, control, and operating conditions. These features lead to a variety of degrees of freedom, which make it difficult to use simple design and control rules for systems integration.

To move towards optimal systems integration of adsorption chillers, this thesis provides appropriate models and methods. First of all, a model of an adsorption chiller is developed, which is accurate enough to consider quantities needed on system level, but also computationally sufficiently efficient for model-based optimizations. To demonstrate the model accuracy, the model is calibrated and validated for two types of adsorption chillers, a lab-scale one-bed adsorption chiller and a commercial two-bed adsorption chiller.

Subsequently, the presented model is used for two areas of systems integration: the integration in hybrid systems and the integration within the auxiliaries. To exemplify the integration in a hybrid system, an adsorption chiller is integrated into a CO2 vapor compression cycle to efficiently provide refrigeration with natural refrigerants only. The exemplified integration identifies a significant potential for energy savings, which can be fully exploited by optimal design and control of the hybrid system. The demonstrated integration in hybrid systems is also an example for a conceptual integration, which quantifies the potential of a specific application.

To integrate the adsorption chiller within the auxiliaries, an optimization-based method is presented for detailed sizing and control of all system components including auxiliaries. The presented method is demonstrated for a solar-thermally-driven adsorption chiller system and determines both, an energetically and an economically optimal design and control. In summary, the thesis provides a comprehensive framework for optimal systems integration of adsorption chillers: from model validation over conceptual integration to detailed design and control.