Dynamic Simulation of Full-Scale Wind Turbine Nacelle System Test Benches (IME) (Neuausg. 2015. 124 S. 21 cm)

個数:

Dynamic Simulation of Full-Scale Wind Turbine Nacelle System Test Benches (IME) (Neuausg. 2015. 124 S. 21 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783958860728

Description


(Text)
A virtual replica of a system test bench for full-scale wind turbine nacelle is built up in
the framework of this dissertation. The primary objective of the simulation study is to
reveal the overall dynamics of the test bench and expose the difference between test
bench dynamics and wind turbine field dynamics. The secondary objective is to make
proper use of the developed models and design active control schemes for test bench
operation.
The virtual test bench is formulated in a multi-body simulation environment, with
flexible drive train dynamics validated with experimental modal testing. The model also
integrates the operation control and DUT control, having a similar hardware-in-the-loop
architecture as the physical test bench. The data exchange between multi-body model
and controllers is realized through co-simulation interface. Test scenarios with aeroelastic wind load calculation can be simulated.
By comparing the interface force/torque response with the reference turbine model, it is found that the open-loop behavior of the tested nacelle explicitly differs from field
operation. The changed boundary conditions of the tested nacelle are the root cause of the difference since the inertia and stiffness of the load application system largely differ from the original rotor system of the turbine. It is also found that the rheonomic joint is the reason why coupled rotor-drive train dynamics are lost when using the wind load software simulator.
The difference of open-loop behavior is compensable via active control. A virtual rotor
system can be artificially created to excited realistic load response inside the DUT as in
field operation. However, the existing multi-body model has hundreds of states and thus computationally expensive. Therefore, low-order plant models in form of transfer
elements were derived from the multi-body model by truncating high-order modes at
designed operation points. The low-order models are feasible to represent the dominant dynamics of the test bench while maintaining the accuracy.
This model-based approach enables convenient design and tuning of control frameworks.
Control schemes corresponding to torque and non-torque load control are proposed
respectively and then put together. Resonances inside the tested nacelle can then be
effectively excited as observed in the simulated turbine field operation. The load application bandwidth is however limited by the dominant dynamics of the test bench.

最近チェックした商品