Wahrscheinlichkeits- und Matrizenrechnung für Sozialwissenschaftler (Sozialwissenschaftliche Forschungsmethoden 11) (2016. 147 S. 210 mm)

個数:

Wahrscheinlichkeits- und Matrizenrechnung für Sozialwissenschaftler (Sozialwissenschaftliche Forschungsmethoden 11) (2016. 147 S. 210 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783957100733

Description


(Text)
Die Themengebiete Wahrscheinlichkeitsrechnung und Lineare Algebra bilden die mathematische Grundlage zahlreicher quantitativer Analyse- und Forschungsansätze in den Sozialwissenschaften. Sie sind dabei nicht nur zum Verständnis klassischer Auswertungsansätze relevant, sondern insbesondere auch um neu adaptierte statistische Verfahren nachvollziehen und integrieren zu können. Dieses Buch bietet eine theorieorientierte Einführung in die Grundlagen der Wahrscheinlichkeitsrechnung und der Linearen Algebra. Im ersten Teil werden nach einer Einführung der drei Kernbegriffe der Wahrscheinlichkeitstheorie (Ereignis, Wahrscheinlichkeit, Zufallsvariable) zentrale Sätze der Wahrscheinlichkeitstheorie behandelt und das Unabhängigkeitskonzept definiert. Es werden hierauf basierend generelle Prinzipien zur Lösung wahrscheinlichkeitstheoretischer Probleme dargestellt, kontraintuitive Resultate erläutert sowie häufig auftretende Fallstricke hervorgehoben. Ein separates Kapitel behandelt als Anwendungsbeispiel die statistische Theorie der Auswertung von Experimenten zur Gewinnung kausaler Aussagen. Der zweite Teil befasst sich mit der Vektor- und Matrizenrechnung. Neben elementaren Begriffen der Vektorrechnung werden hierbei insbesondere auch die Lösung linearer Gleichungssysteme sowie das fortgeschrittene Konzept eines Eigenvektors bzw. eines Eigenwerts behandelt. Anwendungen der Matrixrechnung werden sowohl im Rahmen des linearen Regressionsmodells als auch für den Bereich der Indexkonstruktion dargestellt.
(Author portrait)
Jordan, Pascal
Pascal Jordan ist promovierter Statistiker. Seine Forschungsinteressen liegen in den Gebieten Latente-Variablen-Modelle, stochastische Prozesse und nichtlineare Optimierung unter Nebenbedingungen.

最近チェックした商品