Gödel Revisited : Some More Doubts Concerning the Formal Correctness of Gödel's Incompleteness Theorem (2015. 26 S. 216 mm)

個数:

Gödel Revisited : Some More Doubts Concerning the Formal Correctness of Gödel's Incompleteness Theorem (2015. 26 S. 216 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 商品コード 9783943334067

Description


(Text)
With the presentations by Peter B. Andrews and Lawrence C. Paulson two very different attempts to prove Gödel's Incompleteness Theorem with a high level of formalization are available, in the case of Paulson even machine-assisted. Andrews' system Q0 is an object logic, whereas the natural deduction system underlying the presentation by Paulson is a meta-logic, i. e. it is possible to express theorems of the form "a --b" or "a == b" with two or more occurences of the deduction symbol () in order to express the relationship between (the provability of) theorems rather than just theorems themselves. Paulson's proof yields a twofold result, with a positive and a negative side. It is possible to prove in the meta-logic (assuming the semantic approach and the correctness of the software) the formal statement that from the consistency of the theory under consideration follows the existence of an unprovable theorem; on the other hand, Paulson's proof demonstrates that it is impossible toprove Gödel's Incompleteness Theorem in an object logic, as it was shown for the case of Andrews' system Q0 in [Kubota, 2013], and any attempt immediately results in inconsistency. But if Gödel's Incompleteness Theorem, unlike mathematics in general, can only be expressed in a meta-logic, but not in an object logic, it cannot be considered as a (relevant) mathematical theorem anymore and is only the result of the limited expressiveness of meta-logics, in which the inconsistency of the theory under consideration cannot be expressed, although the construction of a statement like "I am not provable" has the two logical properties of a classical paradox, negativity (negation) and self-reference.

最近チェックした商品