Data Science : Grundlagen, Architekturen und Anwendungen (TDWI) (2. Aufl. 2021. XX, 372 S. 24 cm)

個数:

Data Science : Grundlagen, Architekturen und Anwendungen (TDWI) (2. Aufl. 2021. XX, 372 S. 24 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783864908224

Description


(Text)
Know-how für Data Scientists Übersichtliche und anwendungsbezogene Einführung Zahlreiche Anwendungsfälle und Praxisbeispiele aus unterschiedlichen Branchen Potenziale, aber auch mögliche Fallstricke werden aufgezeigt
Data Science steht derzeit wie kein anderer Begriff für die Auswertung großer Datenmengen mit analytischen Konzepten des Machine Learning oder der künstlichen Intelligenz. Nach der bewussten Wahrnehmung der Big Data und dabei insbesondere der Verfügbarmachung in Unternehmen sind Technologien und Methoden zur Auswertung dort gefordert, wo klassische Businss Intelligence an ihre Grenzen stößt.

Dieses Buch bietet eine umfassende Einführung in Data Science und deren praktische Relevanz für Unternehmen. Dabei wird auch die Integration von Data Science in ein bereits bestehendes Business-Intelligence-Ökosystem thematisiert. In verschiedenen Beiträgen werden sowohl Aufgabenfelder und Methoden als auch Rollen- und Organisationsmodelle erläutert, die im Zusammenspiel mit Konzepten und Architekturen auf Data Science wirken.

Diese 2., überarbeitete Auflage wurde um neue Themen wie Feature Selection und Deep Reinforcement Learning sowie eine neue Fallstudie erweitert.

(Author portrait)
Prof. Dr. Uwe Haneke ist seit 2003 Professor für Betriebswirtschaftslehre und betriebliche Informationssysteme an der Hochschule Karlsruhe - Technik und Wirtschaft. Dort vertritt er u.a. die Bereiche Business Intelligence, Geschäftsprozessmanagement im Fachgebiet Informatik. Seine Publikationen beschäftigen sich mit den Themen Open Source Business Intelligence, Self-Service-BI und Analytics.Prof. Dr. Stephan Trahasch ist Professor für betriebliche Kommunikationssysteme und IT-Sicherheit an der Hochschule Offenburg. Seine Forschungsschwerpunkte liegen in den Bereichen Data Mining, Big Data und Agile Business Intelligence. In Forschungsprojekten beschäftigt er sich mit der praktischen Anwendung von Data Mining und Big-Data-Technologien und deren Herausforderungen in Unternehmen. Er ist Leiter des Institute for Machine Learning and Analytics und Mitglied der Forschungsgruppe Analytics und Data Science an der Hochschule Offenburg.Dr. Michael Zimmer verantwortet bei der Zurich Gruppe Deutschland das Thema künstliche Intelligenz. Hierbei beschäftigt er sich sparten- und ressortübergreifend mit der Identifikation, Entwicklung, Produktivsetzung und Industrialisierung von KI-Anwendungsfällen. Er hat über Data & Analy-tics Governance promoviert, ist Autor und Herausgeber diverser Publikationen und TDWI Fellow. Vor seiner Zeit bei der Zurich Deutschland war er fast 14 Jahre in der Beratung tätig und beschäftigte sich mit dem Aufbau komplexer Data-, Analytics- und KI-Architekturen sowie der Einführung und Konzeption zugehöriger Governance-Strukturen.

最近チェックした商品