Optimal Bands selection for Soil Classification and Moisture Mapping : Study of feature selection algorithms with application to soil classification and estimation of soil moisture (2010. 80 S. 220 mm)

個数:

Optimal Bands selection for Soil Classification and Moisture Mapping : Study of feature selection algorithms with application to soil classification and estimation of soil moisture (2010. 80 S. 220 mm)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 80 p.
  • 商品コード 9783843354943

Description


(Text)
Study of soils and their moisture content is one such area where Remote Sensing has wide applications. However, study of soils was not attractive until the advent of Hyper-spectral/Multi- spectral Imaging by satellite sensors, which provides reflectance information across the different contiguous spectral bands. The large amount of information in these bands served as features in the classification of soils. A spectral library of the different type of soils at different moisture levels serves as a reference for the purpose. However, a satellite sensor is designed to meet multiple criteria, which restricts the number of spectral bands that can be used and their resolution. Moreover, not all features contribute to classification. Hence, it becomes mandatory the optimal combination of the spectral bands is selected for a satisfactory classification of soils and the estimation of their moisture content. This work compares the performance of a hybrid algorithm, made by combining two sub-optimal methods, with the performances of the other classical algorithms for feature selection.
(Author portrait)
KANDASAMY, SivasathivelSivasathivel KANDASAMY : Currently pursuing his PhD in the inversion of Radiative Transfer Model Inversion for vegetation characterization at INRA, Avignon, France.Audrey A. Minghelli-Roman, PhD.: Hyperspectral images for remote sensing applications, Assistant Professor, University of Burgundy and University of Toulon, France.

最近チェックした商品