Simplifying Complex Networks : From a Clustering to a Coarse Graining Strategy (2010. 148 S. 220 mm)

個数:

Simplifying Complex Networks : From a Clustering to a Coarse Graining Strategy (2010. 148 S. 220 mm)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783838328140

Description


(Text)
Networks, or graphs, provide a remarkable framework to represent a wide class of complex systems. Examples of such systems include protein interaction maps, neuronal connections in the brain, the Internet, electrical grids, or social interactions underlying the spreading of an epidemic. For most of these systems, the complexity arises because of their large size and intricate internal organization. A promising approach to simplify such systems is therefore to reduce the complexity of the corresponding networks. Throughout this Thesis, we investigated several methods to reduce the complexity of networks. In particular, we introduced a novel strategy, called Spectral Coarse Graining by analogy with the coarse graining in Statistical Physics. We describe how this new method allows us to unravel the backbone structure of a network and results in a significantly smaller, but truly representative version of the initial network. To illustrate the power of the method, we applied it to several real networks, with particular emphasis on networks describing the molecular dynamics of small proteins.
(Author portrait)
David Gfeller studied Physics at University of Lausanne and thenobtained a PhD in Statistical Biophysics at the Swiss FederalInstitute of Technology (EPFL). He then moved to University ofToronto to work in Computational Biology. His main scientificinterests are in the field of biophysics and computational biology.

最近チェックした商品