On The Correlation Clustering Problem : Algorithm for Correlation Clustering Problem (2009. 64 S. 22 cm)

個数:

On The Correlation Clustering Problem : Algorithm for Correlation Clustering Problem (2009. 64 S. 22 cm)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 64 p.
  • 商品コード 9783838313542

Description


(Text)
We consider the correlation clustering problem which was initially introduced by Bansal, Blum, Chawla et al. Given a complete graph G on n vertices, with weights of +1 or -1 defined on the edges, we want to find a partition which maximizes the sum of the number of edges with positive weights inside the clusters plus the number of edges with negative weights between different clusters. In this thesis we present a deterministic polynomial time approximation scheme for finding such a partition. Our approach is different from the one given by Bansal, Blum, Chawla et al. as it relies on the Szemeredi's Regularity Lemma. We start by introducing the problem, then we introduce the concepts of regularity lemma and give a proof of Szemeredi's Regularity Lemma. Then we present the algorithm and the proof of the correctness of the algorithm.
(Author portrait)
Penumatcha, SriramI graduated from Arizona State University with MA in Mathematics.

最近チェックした商品