Data Science in der Praxis : Data Science in der Praxis - Eine verständliche Einführung in alle wichtigen Data-Science-Verfahren (2022. 360 S. 23 cm)

個数:

Data Science in der Praxis : Data Science in der Praxis - Eine verständliche Einführung in alle wichtigen Data-Science-Verfahren (2022. 360 S. 23 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783836284622

Description


(Text)

Der ideale Einstieg in Data Science für Praktiker! Ob mit oder ohne Mathematikkenntnisse - Sie bekommen hier den Rundumblick, den Sie für Ihre Projekte brauchen. So heben Sie den Schatz, den Daten darstellen können, wenn man sie richtig befragt. Sie lernen die einschlägigen Analysemethoden kennen, bekommen eine Einführung in die Programmiersprache R und erfahren, wie Sie maschinelles Lernen einsetzen. Und zwar inklusive dazugehöriger Werkzeuge wie Notebooks, die die Data-Science-Programmierung heutzutage so zugänglich machen.
Und weil es mit der Technik allein nicht getan ist, geht das Buch auch auf Probleme der Projektdurchführung ein, beleuchtet verschiedene Anwendungsfelder und vergisst auch nicht, ethische Aspekte anzusprechen.
Mit vielen Beispielen, Hinweisen für den Fehlerfall, Entscheidungshilfen und weiteren Praxistipps.


Aus dem Inhalt:

Erste Schritte mit R und RStudioGrundbegriffe der StatistikVorbereitung: Daten reinigen und transformierenk-Means ClusteringLineare und nichtlineare RegressionVorhersagen, Clustering, KlassifizierungTipps und Werkzeuge für alle ProjektphasenIhre Anwendung als REST-API bereitstellenKI und Maschinelles Lernen einsetzenAnomalieerkennung, Warenkorbanalyse und viele weitere AnwendungsfälleMachine Learning: Modelle richtig trainieren

(Review)
»Oft scheitern die ersten Data Science-Versuche an den nötigen Mathematik- und Statistikkenntnissen. Das vorliegende Buch führt den Leser praxisorientiert und mit wohldosierter Theorie, minimaler Statistik und Mathematik an dieses komplexe Thema heran. Bevor es ins Detail geht, wird die Historie von Machine Learning, Data Science und KI sowie eine Begriffsdefinition dargestellt. Nach dem Aufzeigen von Best Practices zum erfolgreichen Managen eines Data-Science-Projekts führt die Reise von der Auswahl der Methoden hin zu den verschiedenen Rollen eines Data Scientist. Ein kurzer Crashkurs zu R bereitet den Leser auf die folgenden Praxiskapitel vor. Dank der gut durchdachten Beispiele und der klaren Struktur, die sich wie ein roter Faden durch das gesamte Werk zieht, erreicht man schnell Lernerfolge. Die nötigen Statistik- und Mathematikkenntnisse werden nebenher auf einem einfachen Level vermittelt. Der Schreibstil ist angenehm und es macht Spaß, die Kapitel durchzuarbeiten. Man merkt dem Autor seine Erfahrung im Thema und auch im Vermitteln von Inhalten an. Zahlreiche Abbildungen und Hinweisboxen unterstützen beim Verstehen der Inhalte.« iX - Magazin für professionelle Informationstechnik 202212
(Author portrait)
Tom Alby ist Chief Digital Transformation Officer bei dem Kreditversicherer »Euler Hermes« für Deutschland, Österreich und die Schweiz. Er unterrichtet Datenanalyse als Lehrbeauftragter an der Hochschule für Angewandte Wissenschaften Hamburg (HAW).

最近チェックした商品