Wirtschaftsmathematik für Bachelor (UTB Uni-Taschenbücher 3674) (6., überarb. Aufl., erw. Aufl. 2020. 294 S. 215 mm)

個数:

Wirtschaftsmathematik für Bachelor (UTB Uni-Taschenbücher 3674) (6., überarb. Aufl., erw. Aufl. 2020. 294 S. 215 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783825254872

Description


(Text)
Die Mathematik ist wichtiger Bestandteil eines wirtschaftswissenschaftlichen Bachelorstudiums. Studierende werden deswegen bereits in den ersten Semestern mit Themen wie zum Beispiel Matrizen, Linearen Gleichungen und der Lagrange-Methode konfrontiert. Dieses erfolgreiche Lehrbuch stellt in der 6., überarbeiteten und erweiterten Auflage die für das Studium relevanten mathematischen Verfahren dar.Die Autorin legt dabei größten Wert auf Verständlichkeit: Jedes Kapitel nennt vorab Lernziele. Wichtige Definitionen und Sätze sind hervorgehoben, Beispiele sowie Prüfungstipps illustrieren den Stoff. Zusammenfassungen und zahlreiche Übungen mit Lösungen helfen zudem dabei, den Stoff zu vertiefen und sich optimal auf die Prüfung vorzubereiten.Das Lehrbuch richtet sich an Studierende der Betriebs- und Volkswirtschaftslehre.
(Table of content)
1 Allgemeinwissen 11.1 Zahlen11.2 Zahlenangaben in Prozent41.3 Zusammenfassung62 Mengen und Abbildungen 72.1 Mengen72.2 Abbildungen92.3 Zusammenfassung163 Matrizen 193.1 Vektoren193.2 Matrizen 223.3 Spezielle Matrizen253.4 Produkt zweier Matrizen283.5 Rechenregeln für Matrizen343.6 Produktionsmatrizen363.7 Zusammenfassung424 Lineare Gleichungen 434.1 Lineare Gleichungssysteme434.2 Gaußalgorithmus 514.3 Produktionsprogramme584.4 Innerbetriebliche Leistungsverrechnung604.5 Beispiele zum Gaußalgorithmus 624.6 Zusammenfassung665 Folgen und Reihen 675.1 Folgen und ihre Eigenschaften675.2 Grenzwert von Folgen725.3 Reihen755.4 Zusammenfassung816 Funktionen einer reellen Variablen 836.1 Ökonomische Funktionen846.2 Spezielle Funktionen946.3 Eigenschaften von Funktionen1076.4 Grenzwert von Funktionen1086.5 Stetigkeit1146.6 Zusammenfassung1227 Differentiation mit einer Variablen 1257.1 Ableitungen1257.1.1 Ableitungen elementarer Funktionen1317.1.2 Ableitungsregeln1327.2 Elastizität1377.3 Monotonie1427.4 Höhere Ableitungen1457.5 Extremstellen1487.6 Wendestellen1587.7 Sattelstellen1647.8 Zusammenfassung1668 Differentiation mit mehreren Variablen 1678.1 Partielle Ableitungen erster Ordnung1678.2 Partielle Elastizität1718.3 Partielle Ableitungen zweiter Ordnung1748.4 Linear-homogen1768.5 Zusammenfassung1769 Optimierung nichtlinearer Funktionen 1779.1 Extremstellen1779.2 Sattelstellen1869.3 Extremstellen unter Nebenbedingungen1899.3.1 Einsetz-Methode1899.3.2 Lagrange-Methode1949.4 Zusammenfassung20410 Integration 20710.1 Bestimmtes Integral20910.2 Unbestimmtes Integral21310.2.1 Integrale elementarer Funktionen 21510.2.2 Integrationsregeln21710.3 Mehrfaches Integral22010.4 Zusammenfassung22211 Übungen 22511.1 Aufgaben22511.2 Lösungen246A Anhang 273A.1 Die kostenlose Software R273Literaturverzeichnis 279Index 281
(Author portrait)
Prof. Dr. Jutta Arrenberg lehrte Wirtschafts- und Finanzmathematik sowie Wirtschaftsstatistik an der TH Köln.

最近チェックした商品