Soft Computing for Image Processing (Studies in Fuzziness and Soft Computing, Vol. 42)

個数:

Soft Computing for Image Processing (Studies in Fuzziness and Soft Computing, Vol. 42)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 590 p.
  • 言語 ENG
  • 商品コード 9783790812688
  • DDC分類 006.3

基本説明

Contents: Preprocessing and Feature Extraction. - Classification. - Applications.

Full Description

Any task that involves decision-making can benefit from soft computing techniques which allow premature decisions to be deferred. The processing and analysis of images is no exception to this rule. In the classical image analysis paradigm, the first step is nearly always some sort of segmentation process in which the image is divided into (hopefully, meaningful) parts. It was pointed out nearly 30 years ago by Prewitt (1] that the decisions involved in image segmentation could be postponed by regarding the image parts as fuzzy, rather than crisp, subsets of the image. It was also realized very early that many basic properties of and operations on image subsets could be extended to fuzzy subsets; for example, the classic paper on fuzzy sets by Zadeh [2] discussed the "set algebra" of fuzzy sets (using sup for union and inf for intersection), and extended the defmition of convexity to fuzzy sets. These and similar ideas allowed many of the methods of image analysis to be generalized to fuzzy image parts. For are cent review on geometric description of fuzzy sets see, e. g. , [3]. Fuzzy methods are also valuable in image processing and coding, where learning processes can be important in choosing the parameters of filters, quantizers, etc.

Contents

Soft Computing and Image Analysis : Features, Relevance and Hybridization.- 1. Preprocessing and Feature Extraction.- Image Filtering Using Evolutionary Neural Fuzzy Systems.- Edge Extraction Using Fuzzy Reasoning.- Image Compression and Edge Extraction Using Fractal Technique and Genetic Algorithm.- Adaptive Clustering for Effiicient Segmentation and Vector Quantization of Images.- On Fuzzy Thresholding of Remotely Sensed Images.- Image Compression Using Pixel Neural Networks.- Genetic Algorithm and Fuzzy Reasoning for Digital Image Compression Using Triangular Plane Patches.- Compression of Digital Mammograms Using Wavelets and Fuzzy Algorithms for Learning Vector Quantization.- Soft Computing and Image Analysis.- Fuzzy Interpretation of Image Data.- 2. Classification.- New Pattern Recognition Tools Based on Fuzzy Logic for Image Understanding.- Adaptive, Evolving, Hybrid Connectionist Systems for Image Pattern Recognition.- Neuro-Fuzzy Computing: Structure, Performance Measure and Applications.- Knowledge Reuse Mechanisms for Categorizing Related Image Sets.- Symbolic Data Analysis for Image Processing.- 3. Applications.- The Use of Artificial Neural Networks for Automatic Target Recognition.- Hybrid Systems for Facial Analysis and Processing Tasks.- Handwritten Digit Recognition Using Soft Computing Tools.- Neural Systems for Motion Analysis : Single Neuron and Network Approaches.- Motion Estimation and Compensation with Neural Fuzzy Systems.- About the Editors.

最近チェックした商品