勾配流(第2版)<br>Gradient Flows : In Metric Spaces and in the Space of Probability Measures (Lectures in Mathematics) (2ND)

勾配流(第2版)
Gradient Flows : In Metric Spaces and in the Space of Probability Measures (Lectures in Mathematics) (2ND)

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 360 p.
  • 商品コード 9783764387211

基本説明

Originating from lectures by L. Ambrosio at the ETH Zürich in Fall 2001. Serves as textbook and reference book on the topic.

Full Description

The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.

Contents

Notation.- Notation.- Gradient Flow in Metric Spaces.- Curves and Gradients in Metric Spaces.- Existence of Curves of Maximal Slope and their Variational Approximation.- Proofs of the Convergence Theorems.- Uniqueness, Generation of Contraction Semigroups, Error Estimates.- Gradient Flow in the Space of Probability Measures.- Preliminary Results on Measure Theory.- The Optimal Transportation Problem.- The Wasserstein Distance and its Behaviour along Geodesics.- Absolutely Continuous Curves in p(X) and the Continuity Equation.- Convex Functionals in p(X).- Metric Slope and Subdifferential Calculus in (X).- Gradient Flows and Curves of Maximal Slope in p(X).

最近チェックした商品