Arabic Handwritten Text Recognition and Writer Identification : Dissertationsschrift (2017. 160 S. 13 Farbabb. 210 mm)

個数:

Arabic Handwritten Text Recognition and Writer Identification : Dissertationsschrift (2017. 160 S. 13 Farbabb. 210 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783668558885

Description


(Text)
Doctoral Thesis / Dissertation from the year 2017 in the subject Computer Science - Applied, grade: 3, , language: English, abstract: Most of the governments and organizations have a huge number of handwritten documents generated by their daily processes. It is imperative to use computers to read the generated handwritten texts, and make them editable and searchable. Therefore, handwritten recognition lately became a very popular research topic and the number of its possible applications is very large. It's capable in resolving complex problems and simplify human activities by converting the handwritten documents into digital form. However, the Arabic handwritten text recognition is a complex process compared with other handwritten languages because Arabic handwritten text is cursive of nature.Therefore, this thesis proposed an Arabic handwritten text recognition and writer identification system based on segmenting the input handwritten text into handwritten sub-words. The systemhas two main modules that are used, for the recognition of the handwritten text and identifying the text's writer. The first module1 has six stages that work together to recognize the Arabic handwritten text and convert it into editable text. These stages are: image acquisition, segmentation, preprocessing, features base construction, classification and post-processing. The second module2 is identified the desired text's writers through several stages that similar to module1. The system proposes an efficient and accurate segmentation algorithm that segments the input handwritten text into a number of handwritten sub-images and each of these segmented sub-images has an Arabic handwritten sub-word. Besides that, an image thresholding algorithm is proposed to convert the sub-images into binary based on using fuzzy c-mean clustering method. Furthermore, the binary sub-images went through proposed noise removal algorithm in order to remove undesired pixels. After that, two groups of features are extracted from the handwritten sub-images. The first features group that is used for models1 includes structural, statistical, Discrete Cosine Transform (DCT) and proposed Modified Histogram of Oriented Gradient (MHOG1) features. However, the second features group which is used for module2 includes proposed MHOG2 and shape features. In addition, best classification results are obtained by using Support Vector Machine (SVM) classifier.
(Author portrait)
Mustafa Salam Kadhm is a lecturer at the Department of Computer Engineering Techniques, Imam Ja'afar Al-Sadiq University. He received his B.S. degrees in Software Engineering from Al-Mansour University College, Baghdad, Iraq in 2009 and M.S. in Information Technology from University of Tun Abdulrazak, Malaysia in 2012. His research interests include Artificial Intelligence, Image Processing, Computer Vision, Pattern Recognition, and Data Mining.