Segmentation-Verification for Handwritten Digit Recognition : Dissertationsschrift (2017. 120 S. 12 Farbabb. 210 mm)

個数:

Segmentation-Verification for Handwritten Digit Recognition : Dissertationsschrift (2017. 120 S. 12 Farbabb. 210 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783668518100

Description


(Text)
Doctoral Thesis / Dissertation from the year 2016 in the subject Computer Science - Applied, National Higher School Of Computer Engineering, language: English, abstract: Automatic reading of digit fields from an image document has been proposed in several applications such as bank checks, postal code and forms. In this context, two main problems occur when attempting to design a handwritten digit string recognition system. The first problem is the link between adjacent digits, which can be naturally spaced, overlapped or/and connected. The second problem is the unknown length of the digit string, which is not carefully written by people in real-life situations.In this thesis, SVM-based segmentation-verification system for segmenting two connected handwritten digits using the oriented sliding window is proposed. It employs a segmentation-verification system using conjointly the oriented sliding window and Support Vector Machine (SVM) classifiers. Experimental results showed that the proposed system is more appropriate for segmenting simple and multiple connections. Its main advantage lays in the use few rules for finding the optimal segmentation path. Hence, the proposed approach constitutes a tradeoff between the correct segmentation and the number of the segmentation cuts.Thereafter, we propose a new design of a handwritten digit string recognition system based on the explicit approach for the unknown-length digit strings. Three methods are combined according the link of adjacent digits, which are the histogram of the vertical projection dedicated for spaced digits, the contour analysis dedicated for overlapped digits and the Radon transform performed on the sliding window dedicated for connected digits. A recognition and verification module based on Support Vector Machine (SVM) classifiers allows analyzing and deciding the rejection or acceptance each segmented digit image. Experimental results conducted on the benchmark dataset show that the proposed system is effective for segmenting handwritten digit strings without prior knowledge of their length comparatively to the state-of-art.
(Author portrait)
Abdeljalil Gattal was born in Algeria. He received his BS degree in Computer Science from University of Skikda (Algeria) in 2004, MS degree in Computer Science "Information and knowledge systems" from Abbes Laghrour University of Khenchela (Algeria) in 2009 and He received his PhD in 2016 from Ecole nationale Supérieure d'Informatique (ESI-Algeria) in Computer Science and focuses in Segmentation-Verification for Handwritten Digit Recognition. Currently, he is working as Associate Professor at the Department of Mathematics and Computer Science in Larbi Tebessi University, Tébessa (Algeria). He supervised many Master and License students. He has published a number of papers. His research interests include Image Analysis, Pattern Recognition and Recognition of handwriting.

最近チェックした商品