Conformal Mapping and its Applications. Fluid flow, non-coaxial cable, steady temperatures : Complex Analysis. Magisterarbeit (2017. 60 S. 210 mm)

個数:

Conformal Mapping and its Applications. Fluid flow, non-coaxial cable, steady temperatures : Complex Analysis. Magisterarbeit (2017. 60 S. 210 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783668494732

Description


(Text)
Master's Thesis from the year 2017 in the subject Mathematics - Miscellaneous, grade: A, University of Notre Dame, language: English, abstract: Complex analysis, commonly known as the theory of functions of a complex variable, is one of the important branches of classical mathematics. Not only it is useful in several mathematical branches such as algebraic geometry, number theory, analytic combinatorics and applied mathematics, but also proved to be highly valuable in physics including hydrodynamics and thermodynamics, and in engineering fields such as nuclear, aerospace, mechanical and electrical engineering. One important application of complex analysis is in the string theory, which studies conformal invariants in quantum field theory. Applying analytic methods to partial differential equations allows researchers to study the evolution of a system that is changing in manner governed by precise constraints which may be used to represent many important problems in physical world, relating for example diffusion of heat, fluid flows or quantum mechanics. Euler, Gauss, Riemann, Cauchy and Weierstrass are all well acknowledged mathematicians who worked extensively on complex analysis. Conformal mapping is an important technique used in complex analysis and has many applications in different physical situations. It is a mapping that preserves oriented angles locally, allowing it to be efficiently implemented in creating solutions to the Laplace equation on complicated planar domains. This can be used to simplify regions with complicated shapes by preserving certain physical aspects and maintaining smallscaled shapes. In other words, the technique of a conformal mapping is to transpose a problem from a complicated region to a simpler domain, whereby it would be easier to solve; then to be able to translate the solution to the original problem by using the inverse of a conformal mapping to map back to the complicated region. Moreover, the crucial point is that an analytic-mapping requires only a non-vanishing derivative to be conformal and then to be able to simplify a governing and rather complicated principle.

最近チェックした商品