Likelihood Method for Randomized Time-to-Event Studies with All-or-None Compliance : Causal Inference in Survival analysis (2017. 160 S. 18 Farbabb. 210 mm)

個数:

Likelihood Method for Randomized Time-to-Event Studies with All-or-None Compliance : Causal Inference in Survival analysis (2017. 160 S. 18 Farbabb. 210 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783668438637

Description


(Text)
Research Paper (postgraduate) from the year 2009 in the subject Mathematics - Statistics, grade: A, University of Canterbury (Department of Mathematics and Statistics), course: Statistics, language: English, abstract: Estimating causal effects in clinical trials often suffers from treatment non-compliance and missing outcomes. In time-to-event studies, it is more complicated because of censoring, the mechanism of which may be non-ignorable. While new estimators have recently been proposed to account for non-compliance and missing outcomes, few papers have specifically considered time-to-event outcomes, where even the intention-to-treat (ITT) estimator is potentially biased for estimating causal effects of assigned treatment. In this paper we develop a likelihood based method for randomized clinical trials (RCTs) with non-compliance for time-to-event data and adapt the EM algorithm according to derive the maximum likelihood estimators (MLEs). In addition, we give formulations of the average causal effect (ACE) and compliers average causal effect (CACE) to suit survival analysis. To illustrate the likelihood-based method (EM algorithm), a breast cancer trial data was re-analysed using a model, which assumes that the failure times and censored times both follow Weibull and Lognormal distributions, respectively (termed the NIGN-WW model and NIGN-LL model).

最近チェックした商品