Data Fusion : Concepts, Ideas and Deep Learning (3. Aufl. 2025. 370 S. Approx. 370 p. 235 mm)

個数:
  • 予約

Data Fusion : Concepts, Ideas and Deep Learning (3. Aufl. 2025. 370 S. Approx. 370 p. 235 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 370 p.
  • 言語 ENG
  • 商品コード 9783662710227

Full Description

This textbook provides a comprehensive introduction to the concepts and ideas of data fusion. It is an extensively revised third edition of the author's book which was originally published by Springer-Verlag in 2007 (first edition) and 2012 (second edition).

 The main changes in the new edition are:

NEW MATERIAL. A new chapter on Deep Learning and significant amounts of new material in most chapters in the book
SOFTWARE CODE. Where appropriate we have given details of both Matlab and Python code which may be downloaded from the internet.
FIGURES. More than 40 new figures have been added to the text. 

 The book is intended to be self-contained. No previous knowledge of data fusion is assumed, although some familiarity with basic tools of linear algebra, calculus and simple probability is recommended.

Although conceptually simple, the study of data fusion presents challenges that are unique within the education of the electrical engineer or computer scientist. To become competent in the field, the student must become familiar with tools taken from a wide range of diverse subjects including deep learning, signal processing, statistical estimation, tracking algorithms, computer vision and control theory. All too often, the student views data fusion as a miscellaneous assortment of different processes which bear no relationship to each other. In contrast, in this book the processes are unified by using a common statistical framework. As a consequence, the underlying pattern of relationships that exists between the different methodologies is made evident.

The book is illustrated with many real-life examples taken from a diverse range of applications and contains an extensive list of modern references.

Contents

1 Introduction.- 2 Sensors.- 3 Architecture.- 4 Common Representational Format.- 5 Deep Learning.- 6 Spatial Alignment.- 7 Temporal Alignment.- 8 Semantic Alignment.- 9 Radiometric Normalization.- 10 Bayesian Inference.- 11 Parameter Estimation.- 12 Robust Statistics.- 13 Sequential Bayesian Inference and Kalman Filters.- 14 Bayesian Decision Theory.- 15 EnsembleLearning.- Index.

最近チェックした商品