Eine kurze Geschichte der Analysis : für Mathematiker und Philosophen

個数:

Eine kurze Geschichte der Analysis : für Mathematiker und Philosophen

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 285 p.
  • 言語 GER
  • 商品コード 9783662578155

Full Description

Wer Analysis lernt, fragt sich irgendwann: Wie und warum kamen all diese merkwürdigen Begriffe zustande - Zahl, Funktion, Stetigkeit, Konvergenz, Differenzial, Integral? Wer hat eigentlich die mathematische Formel erfunden? Aber auch: Wovon handelt Mathematik überhaupt? Von unbezweifelbaren Wahrheiten? Von nützlichen Konstruktionen? Ist Mathematik Glaubenssache?

Diese und viele andere Fragen werden anhand der Originalliteratur aus den letzten 350 Jahren beantwortet: Newton, Leibniz, Johann Bernoulli, Euler, d'Alembert, Bolzano, Cauchy, Riemann, Weierstraß, Cantor, Dedekind, Hilbert, Schmieden und Laugwitz. Die Herkunft der heutigen Fachbegriffe aus ihren philosophischen Wurzeln wird so für den Leser nachvollziehbar, er erkennt die Brüchigkeit der teils willkürlich gesetzten Aspekte und erlebt den dadurch bedingten Wandel mathematischer Grundbegriffe.

Das Buch ist knapp, präzise und zugleich sehr anschaulich verfasst. Wer es verstehen will, muss schon einmal Erfahrung mit Analysis gemacht und von Funktion, Stetigkeit und Konvergenz etwas gehört haben - zum Verständnis sind aber fast überall Abiturkenntnisse ausreichend. Das Buch ist somit sowohl für Lehramtsstudierende und interessierte Mathematiker als auch Historiker und Philosophen geeignet.

Contents

Einleitung: Die vier großen Themen dieses Buches.- Die Erfindung der mathematischen Formel.- Zahlen, Strecken, Punkte - aber keine krummen Linien.- Linien und Veränderliche.- Früheres: Indivisibel - ein alter Begriff. Oder: Woraus besteht das Kontinuum?- Gibt es unendliche Zahlen? - ein unentschiedener Streit zwischen Leibniz und Johann Bernoulli.- Johann Bernoullis Differenzialregeln - was heißt „gleich"?- Euler verabsolutiert das formale Rechnen.- Akzente in der Algebraischen Analysis nach Euler.- Bolzano: der republikanische Revolutionär der Analysis.- Cauchy: der bürgerliche Revolutionär als Restaurator.- Das Interregnum: Analysis auf sumpfigem Boden.- Weierstraß: der letzte Versuch einer substanzialen Analysis.- Die Ablösung der Analysis von der Wirklichkeit - und die Einführung des aktualen Unendlich in die Grundlagen der Mathematik.- Analysis mit oder ohne Paradoxien?

最近チェックした商品